高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机矩阵非渐近谱理论的协作频谱感知算法研究

许炜阳 李有均 徐宏乾 谢汇强

许炜阳, 李有均, 徐宏乾, 谢汇强. 基于随机矩阵非渐近谱理论的协作频谱感知算法研究[J]. 电子与信息学报, 2018, 40(1): 123-129. doi: 10.11999/JEIT170309
引用本文: 许炜阳, 李有均, 徐宏乾, 谢汇强. 基于随机矩阵非渐近谱理论的协作频谱感知算法研究[J]. 电子与信息学报, 2018, 40(1): 123-129. doi: 10.11999/JEIT170309
XU Weiyang, LI Youjun, XU Hongqian, XIE Huiqiang. Study on Cooperative Spectrum Sensing Algorithm Based on Random Matrix Non-asymptotic Spectral Theory[J]. Journal of Electronics & Information Technology, 2018, 40(1): 123-129. doi: 10.11999/JEIT170309
Citation: XU Weiyang, LI Youjun, XU Hongqian, XIE Huiqiang. Study on Cooperative Spectrum Sensing Algorithm Based on Random Matrix Non-asymptotic Spectral Theory[J]. Journal of Electronics & Information Technology, 2018, 40(1): 123-129. doi: 10.11999/JEIT170309

基于随机矩阵非渐近谱理论的协作频谱感知算法研究

doi: 10.11999/JEIT170309
基金项目: 

国家自然科学基金(61201177)

Study on Cooperative Spectrum Sensing Algorithm Based on Random Matrix Non-asymptotic Spectral Theory

Funds: 

The National Natural Science Foundation of China (61201177)

  • 摘要: 将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference, EMMED)的协作感知算法。对于任意给定的协作用户个数K和采样点数N,首先推导了最大最小特征值之差的精确概率密度函数(Probability Density Function, PDF)和累积分布函数(Cumulative Distribution Function, CDF),然后利用该分布函数设计了所提算法的判决阈值。理论分析表明,EMMED算法的判决阈值较已有的渐进最大最小特征值差(Asymptotic Maximum Minimum Eigenvalue Difference, AMMED)检测更为精确,算法无需主用户信号特征并且能够对抗噪声不确定度影响。仿真结果表明,存在噪声不确定度的感知环境下,EMMED算法较已有的精确最大特征值(Exact Maximum Eigenvalue, EME)和EMMER等频谱感知算法具有更好的检测性能。
  • KHATTAB A and BAYOUMI M A. An overview of IEEE standardization efforts for cognitive radio networks[C]. 2015 IEEE International Symposium on Circuits and Systems, Lisbon, 2015: 982-985. doi: 10.1109/ ISCAS.2015.7168800.
    OH S W, MA Y, PEH E, et al. Introduction to Cognitive Radio and Television White Space[M]. Hoboken, NJ,USA, John Wiley Sons, Inc., 2016: 1-22. doi: 10.1002/ 9781119110491.ch1.
    SHARMA S K, BOGALE T E, CHATZINOTAS S, et al. Cognitive radio techniques under practical imperfections: A survey[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 1858-1884. doi: 10.1109/COMST.2015.2452414.
    弥寅, 卢光跃. 基于特征值极限分布的合作频谱感知算法[J]. 通信学报, 2015, 36(1): 84-89. doi: 10.11959/j.issn.1000-436x. 2015010.
    MI Yin and LU Guangyue. Cooperative spectrum sensing algorithm based on limiting eigenvalue distribution[J]. Journal on Communications, 2015, 36(1): 84-89. doi: 10.11959/j.issn.1000-436x.2015010.
    TAHERPOUR A, NASIRI-KENARI M, and GAZOR S. Multiple antenna spectrum sensing in cognitive radios[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 814-823. doi: 10.1109/TWC.2009.02.090385.
    CARDOSO L S, DEBBAH M, BIANCHI P, et al. Cooperative spectrum sensing using random matrix theory [C]. 2008 3rd International Symposium on Wireless Pervasive Computing, Santorini, 2008: 334-338. doi: 10.1109/ISWPC. 2008.4556225.
    ZENG Y, KOH C L, and LIANG Y C. Maximum eigenvalue detection: Theory and application[C]. 2008 IEEE International Conference on Communications, Beijing, 2008: 4160-4164. doi: 10.1109/ICC.2008.781.
    ZENG Y and LIANG Y C. Eigenvalue based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793. doi: 10.1109/ TCOMM.2009.06.070402.
    王颖喜, 卢光跃. 基于最大最小特征值之差的频谱感知技术研究[J]. 电子与信息学报, 2010, 32(11): 2571-2575. doi: 10.3724/SP.J.1146.2009.01434.
    WANG Yingxi and LU Guangyue. DMM based spectrum sensing method for cognitive radio systems[J]. Journal of Electronics Information Technology, 2010, 32(11): 2571-2575. doi: 10.3724/SP.J.1146.2009.01434.
    ZANELLA A, CHIANI M, and WIN M Z. On the marginal distribution of the eigenvalues of Wishart matrices[J]. IEEE Transactions on Communications, 2009, 57(4): 1050-1060. doi: 10.1109/TCOMM.2009.04.070143.
    PENNA F, GARELLO R, FIGLIOLI D, et al. Exact non- asymptotic threshold for eigenvalue-based spectrum sensing[C]. 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Hannover, 2009: 1-5. doi: 10.1109/CROWNCOM.2009. 5189008.
    RATNARAJAH T, ZHONG C, KORTUN A, et al. Complex random matrices and multiple-antenna spectrum sensing[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, 2011: 3848-3851. doi: 10.1109/ICASSP.2011.5947191.
    CHATZINOTAS S, SHARMA S K, and OTTERSTEN B. Asymptotic analysis of eigenvalue-based blind Spectrum Sensing techniques[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, 2013: 4464-4468. doi: 10.1109/ICASSP.2013.6638504.
    RATNARAJAH T, VAILLANCOURT R, and ALVO M. Eigenvalues and condition numbers of complex random matrices[J]. SIAM Journal on Matrix Analysis Applications, 2005, 26(2): 441-456. doi: 10.1137/S089547980342204X.
    CHIANI M. On the probability that all eigenvalues of Gaussian and Wishart random matrices lie within an interval[J]. IEEE Transactions on Information Theory, 2017, 63(7): 4521-4531. doi: 10.1109/TIT.2017.2694846.
    TRACY C A and WIDOM H. On orthogonal and symplectic matrix ensembles[J]. Communications in Mathematical Physics, 1996, 177(3): 727-754. doi: 10.1007/BF02099545.
    刘宁, 史浩山, 刘利平, 等. 基于随机矩阵的新型频谱盲感知方法[J]. 西北工业大学学报, 2016, 34(2): 262-267. doi: 10.3969/j.issn.1000-2758.2016.02.013.
    LIU Ning, SHI Haoshan, LIU Liping, et al. A novel blind spectrum sensing algorithm based on random matrix[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 262-267. doi: 10.3969/j.issn.1000-2758.2016.02.013.
    CHIANI M. Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution[J]. Journal of Multivariate Analysis, 2014, 129: 69-81. doi: 10. /j.1016jmva.2014.04.002.
  • 加载中
计量
  • 文章访问数:  1292
  • HTML全文浏览量:  122
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-07
  • 修回日期:  2017-09-01
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回