高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机宽线检测方法

曲智国 谭贤四 林强 王红 费太勇

曲智国, 谭贤四, 林强, 王红, 费太勇. 随机宽线检测方法[J]. 电子与信息学报, 2018, 40(1): 209-218. doi: 10.11999/JEIT170296
引用本文: 曲智国, 谭贤四, 林强, 王红, 费太勇. 随机宽线检测方法[J]. 电子与信息学报, 2018, 40(1): 209-218. doi: 10.11999/JEIT170296
QU Zhiguo, TAN Xiansi, LIN Qiang, WANG Hong, FEI Taiyong. Randomized Wide Line Detector[J]. Journal of Electronics & Information Technology, 2018, 40(1): 209-218. doi: 10.11999/JEIT170296
Citation: QU Zhiguo, TAN Xiansi, LIN Qiang, WANG Hong, FEI Taiyong. Randomized Wide Line Detector[J]. Journal of Electronics & Information Technology, 2018, 40(1): 209-218. doi: 10.11999/JEIT170296

随机宽线检测方法

doi: 10.11999/JEIT170296
基金项目: 

国家自然科学基金 (61401504),博士后科学基金(2014M 562562)

Randomized Wide Line Detector

Funds: 

The National Natural Science Foundation of China (61401504), China Postdoctoral Science Foundation (2014M 562562)

  • 摘要: 为消除基本宽线检测算子中的冗余计算量,提高算法的运算速度,该文提出一种宽线算子的快速实现方法随机移动宽线算子。基本宽线算子采取逐像素移动模板的方式检测图像中的宽线特征,与之不同,随机移动宽线算子在检测时,随机地在图像中放置检测模板,并根据当前像素类型采用启发式的准则确定模板移动的策略,从而加快了模板移动速度,较好地消除了基本宽线检测算法中的冗余运算;在此基础上,提出了两种提前结束条件,可根据检测情况提前结束循环,进一步节省了运算量。利用测试图像对快速算子进行了实验分析,结果表明,随机移动宽线算子在取得相当检测性能的同时,提高了基本宽线算子的运算速度。
  • LINDEBERG T. Edge detection and ridge detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2): 117-154. doi: 10.1023/A: 1008097225773.
    JACOB M and UNSER M. Design of steerable filters for feature detection using Canny-Like criteria[J]. IEEE Transaction on Pattern Analysis Machine Intelligence, 2004, 26(8): 1007-1019. doi: 10.1109/TPAMI.2004.44.
    EBERLY D, GARDNER R, MORSE B, et al. Ridges for image analysis[J]. Journal of Mathematical Imaging and Vision, 1994, 4(4): 353-373. doi: 10.1007/BF01262402.
    AGGARWAL N and KARL W C. Line detection in images through regularized Hough transform[J]. IEEE Transactions on Image Processing, 2006, 15(3): 582-591. doi: 10.1109/TIP. 2005.863021.
    XU Zezhong, SHIN Bok Suk, and KLETTE Reinhard. Closed form line-segment extraction using the Hough transform[J]. Pattern Recognition, 2015, 48(12): 4012-4023. doi: 10.1016/j. patcog.2015.06.008.
    LOPEZ-MOLINA C, VIDAL-DIEZ DE ULZURRUN G, BAETENS J M, et al. Unsupervised ridge detection using second order anisotropic Gaussian kernels[J]. Signal Processing, 2015, 116: 55-67. doi: 10.1016/j.sigpro.2015.03. 024.
    HU Yangyang, ZHANG Wenqiang, LU Hong, et al. Wide line detection with water flow[C]. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, 2016: 1353-1355.
    PANDEY D, YIN Xiaoxia, WANG Hua, et al. Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising[J]. Computer Vision and Image Understanding, 2017, 155: 162-172. doi: 10.1016/j.cviu.2016.12.005.
    SUDESHNA S K and SANTI P M. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy[J]. Computer Methods and Programs in Biomedicine, 2016, 133: 111-132. doi: 10.1016/j.cmpb.2016. 05.015.
    LI Shuxiao, CHANG Hongxing, and ZHU Chengfei. Fast curvilinear structure extraction and delineation using density estimation[J]. Computer Vision and Image Understanding, 2009, 113(6): 763-775. doi: 10.1016/j.cviu.2009.01.003.
    LIU L, ZHANG D, and YOU J. Detecting wide lines using isotropic nonlinear filtering [J]. IEEE Transactions on Image Processing, 2007, 16(6): 1584-1595. doi: 10.1109/TIP.2007. 894288.
    LIU L, NGADI M O, PRASHER S O, et al. Objective determination of pork marbling scores using the wide line detector[J]. Journal of Food Engineering, 2012, 110: 497-504. doi: 10.1016/j.jfoodeng.2011.11.008.
    CRISTIAN V and SERGIU N. Detecting curvilinear featuresusing structure tensors[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3874-3887. doi: 10.1109/TIP. 2015.2447451.
    SMITH S M and BRADY J M. SUSANA new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78. doi: 10.1023/A: 1007963824710.
    KNUTH D E, MORRIS J H, and PRATT V R. Fast pattern matching in strings[J]. SIAM Journal of Computing, 1977, 6: 323-350. doi: 10.1137/0206024.
    BOYER R S and MOORE J S. A fast string searching algorithm[J]. Communications of the ACM, 1977, 20(10): 762-772. doi: 10.1145/359842.359859.
    ABDOU I E and PRATT W K. Quantitative design and evaluation of enhancement/thresholding edge detectors[J]. Proceedings of the IEEE, 1979, 67(5): 753-763. doi: 0.1109/ PROC.1979.11325.
    IGOR S and ALEKSEJ A. Convolutional neural network based automatic object detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 14(5): 740-744. doi: 10.1109/LGRS.2016.2542358.
    RODRIGO F N, ROBERTO A L, and RUBENS C M. Fingerprint liveness detection using convolutional neural networks[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1206-1213. doi: 10.1109/TIFS. 2016.2520880.
  • 加载中
计量
  • 文章访问数:  950
  • HTML全文浏览量:  149
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-11-06
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回