JOUX A. A one round protocol for tripartite Diffie- Hellman[J]. Journal of Cryptology, 2004, 17(4): 385-393. doi: 10.1007/s00145-004-0312-y.
|
MENEZES A J, OKAMOTO T, and VANSTONE S A. Reducing elliptic curve logarithms to logarithms in a finite field[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1639-1646. doi: 10.1109/18.259647.
|
BONEH D and FRANKLIN M K. Identity-based encryption from the Weil pairing[C]. International Cryptology Conference on Advances in Cryptology, Springer-Verlag, 2001: 213-229.
|
PATERSON K G. ID-based signatures from pairings on elliptic curves[J]. Electronics Letters, 2002, 38(18): 1025-1026.
|
GOPAL P V S S N and Reddy P V. Efficient ID-based key-insulated signature scheme with batch verifications using bilinear pairings over elliptic curves[J]. Journal of Discrete Mathematical Sciences Cryptography, 2015, 18(4): 385-402. doi: 10.1080/09720529.2014.1001586.
|
ROBERT O. On Constructing families of pairing-friendly elliptic curves with variable discriminant[C]. Progress in Cryptology-Indocrypt 2011, International Conference on Cryptology in India, Chennai, India, 2011: 310-319.
|
FOTIADIS G and KONSTANTINOU E. More sparse families of pairing-friendly elliptic curves[C]. Cryptology and Network Security, Springer International Publishing, 2014: 384-399.
|
FREEMAN D, SCOTT M, and TESKE E. A taxonomy of pairing-friendly elliptic curves[J]. Journal of Cryptology, 2010, 23(2): 224-280. doi: 10.1007/s00145-009-9048-z.
|
LE D P, MRABET N E, and TAN C H. On near prime-order elliptic curves with small embedding degrees[C]. Algebraic Informatics. Springer International Publishing, 2015: 140-151. [10] LEE H S and PARK C M. Constructing pairing-friendly curves with variable CM discriminant[J]. Bulletin of the Korean Mathematical Society, 2012, 49(1): 75-88. doi: 10.4134/BKMS.2012.49.1.075.
|
TANAKA S and NAKAMULA K. Constructing pairing- friendly elliptic curves using factorization of cyclotomic polynomials[C]. Pairing-Based Cryptography-Pairing 2008, Second International Conference, Egham, UK, 2008: 136-145.
|
YOON K. A new method of choosing primitive elements for Brezing-Weng families of pairing- friendly elliptic curves[J]. Journal of Mathematical Cryptology, 2015, 9(1):1-9.
|
LEE H S and LEE P R. Families of pairing-friendly elliptic curves from a polynomial modification of the Dupont- Enge-Morain method[J]. Applied Mathematics Information Sciences, 2016, 10(2): 571-580. doi: 10.18576/amis/100218.
|
YASUDA T, TAKAGI T, and SAKURAI K. Constructing pairing-friendly elliptic curves using global number fields[C]. Third International Symposium on Computing and Networking, 2015: 477-483.
|
OKANO K. Note on families of pairing-friendly elliptic curves with small embedding degree[J]. JSIAM Letters, 2016: 61-64. doi: 10.14495/jsiaml.8.61.
|
LI L. Generating pairing-friendly elliptic curves with fixed embedding degrees[J]. Science China Information Sciences, 2017, 60(11): 119101. doi: 10.1007/s11432-016-0412-0.
|
ATKIN A O L and MORAIN F. Elliptic curves and primality proving[J]. Mathematics of Computation, 1997, 61(203): 29-68. doi: 10.1090/S0025-5718-1993-1199989-X.
|
GALBRAITH S D, MCKEE J F, and VALENCA P C. Ordinary abelian varieties having small embedding degree[J]. Finite Fields Their Applications, 2007, 13(4): 800-814. doi: 10.1016/j.ffa.2007.02.003.
|
ZHANG M, HU Z, and XU M. On constructing parameterized families of pairing-friendly elliptic curves with\rho=1[C]. International Conference on Information Security and Cryptology, Springer, Cham, 2016: 403-415.
|
FOTIADIS G and KONSTANTINOU E. On the efficient generation of generalized MNT elliptic curves[C]. Algebraic Informatics, Springer Berlin Heidelberg, 2013: 147-159.
|