高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂大气条件对微波传播衰减的影响研究

刘西川 宋堃 高太长 胡云涛

刘西川, 宋堃, 高太长, 胡云涛. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181-188. doi: 10.11999/JEIT170253
引用本文: 刘西川, 宋堃, 高太长, 胡云涛. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181-188. doi: 10.11999/JEIT170253
LIU Xichuan, SONG Kun, GAO Taichang, HU Yuntao. Research on the Effect of Complex Atmospheric Condition on Microwave Propagation Attenuation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 181-188. doi: 10.11999/JEIT170253
Citation: LIU Xichuan, SONG Kun, GAO Taichang, HU Yuntao. Research on the Effect of Complex Atmospheric Condition on Microwave Propagation Attenuation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 181-188. doi: 10.11999/JEIT170253

复杂大气条件对微波传播衰减的影响研究

doi: 10.11999/JEIT170253
基金项目: 

国家自然科学基金(41505135, 41475020),江苏省自然科学基金(BK20150708)

Research on the Effect of Complex Atmospheric Condition on Microwave Propagation Attenuation

Funds: 

The National Natural Science Foundation of China (41505135, 41475020), The Natural Science Foundation of Jiangsu Province (BK20150708)

  • 摘要: 为了进一步提高大气对微波传播衰减影响的描述精度,为微波链路遥感反演大气新应用提供理论基础,该文系统性研究了大气主要吸收气体和各种大气粒子对微波传播的衰减情况。利用ITU-R模型计算大气主要气体成分对微波的吸收衰减,然后在降水粒子、云雾粒子和沙尘粒子的介电模型、形状、相态和谱分布的基础上,计算得到群粒子对微波的衰减特性,系统讨论降水强度、相态、含水量、谱分布、气压和温度等因素对微波传播衰减的影响。数值模拟结果表明,大气主要气体成分在60 GHz, 180 GHz和320 GHz附近存在强烈的吸收带,其衰减系数与水蒸气含量和气压呈正相关,与温度呈负相关;降水强度、谱分布、相态以及冰水比例对降水的微波衰减存在不同程度的影响,云雾的含水量和相态,沙尘的数密度、谱分布和含水量是影响微波衰减的主要因素,而温度的影响较小;大气各因素的衰减系数从大到小依次为爆炸沙尘、降水、气体吸收、水雾、冰雾和自然沙尘。
  • 刘西川, 高太长, 秦健, 等. 降雨对微波传输特性的影响分析[J]. 物理学报, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59. 2156.
    LIU Xichuan, GAO Taichang, QIN Jian, et al. Effects analysis of rainfall on microwave transmission characteristics [J]. Acta Physica Sinica, 2010, 59(3): 2156-2162. doi: 10.7498 /aps.59.2156.
    Radiocommunication Sector of ITU, IMT Vision-Framework and overall objectives of the future development of IMT for 2020 and beyond[R]. Recommendation ITU-R M.2083-0. 2015.
    RAFIQUL I M, HABAEBI M H, HAIDAR I M, et al. Rain fade mitigation on earth-to-satellite microwave links using site diversity[C]. International Conference on Communications, Kuching, Malaysia, 2015: 186-191. doi: 10.1109/MICC.2015.7725431.
    王朝阳, 周兴华, 卢勇夺, 等. 中国沿海地基GPS水汽反演精度分析[J]. 大地测量与地球动力学, 2016, 36(12): 1060-1063. doi: 10.14075/j.jgg.2016.12.006.
    WANG Chaoyang, ZHOU Xinghua, LU Yongduo, et al. Accuracy analysis on precipitable water vapor derived from chinese coastal GPS measurement[J]. Journal of Geodesy and Geodynamic, 2016, 36(12): 1060-1063. doi: 10.14075/j.jgg. 2016.12.006.
    TOLLEFSON J. Mobile-phone signals bolster street-level rain forecasts[J]. Nature, 2017, 544(13): 146-147. doi: 10.1038 /nature.2017.21799.
    高太长, 宋堃, 刘西川, 等. 基于微波链路的路径雨强反演方法及实验研究[J]. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301.
    GAO Taichang, SONG Kun, LIU Xichuan, et al. Research on the method and experiment of path rainfall intensity inversion using a microwave link[J]. Acta Physica Sinica, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301.
    印敏, 高太长, 刘西川, 等. 微波链路测量降水研究综述[J]. 气象, 2015, 41(12): 1545-1553. doi: 10.7519/j.issn. 1000-0526. 2015.12.013.
    YIN Min, GAO Taichang, LIU Xichuan, et al. Research on microwave link measurement of precipitation[J]. Meteorological Monthly, 2015, 41(12): 1545-1553. doi: 10.7519 /j.issn.1000-0526.2015.12.013.
    KARMAKAR P K. Microwave Propagation and Remote Sensing: Atmospheric Influences with Models and Applications[M]. New York: CRC Press, 2011: 153-180.
    PERIC M V, PERIC D B, TODOROVIC B M, et al. Dynamic rain attenuation model for millimeter wave network analysis[J]. IEEE Transactions on Wireless Communications, 2017, 16(1): 441-450. doi: 10.1109/TWC.2016.2624729.
    赵振维. 水凝物的电波传播特性与遥感研究[D]. [博士论文], 西安电子科技大学, 2001: 8-73.
    ZHAO Zhenwei. Study on radiowave propagation characteritiscs and remote sensing of hydrometeors[D]. [Ph.D. dissertation], Xidian University, 2001: 8-73.
    杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减[J]. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205.
    YANG Ruike, LI Qianqian, and YAO Ronghuil. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere[J]. Acta Physica Sinica, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205.
    刘西川, 刘磊, 高太长, 等. 不同类型降水对毫米波传播特性的影响研究[J]. 红外与毫米波学报, 2013, 32(4): 379-384. doi: 10.3724/SP.J.1010.2013.00379.
    LIU Xichuan, LIU Lei, GAO Taichang, et al. Effect of different precipitation on millimeter wave propagation characteristics[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 379-384. doi: 10.3724/SP.J.1010.2013.00379.
    林乐科, 赵振维, 卢昌胜, 等. 地空路径统计雨衰减建模的几个问题[J]. 电波科学学报, 2016, 31(3): 616-622. doi: 10.13443 /j.cjors.2015081001.
    LIN Leke, ZHAO Zhenwei, LU Changsheng, et al. Issues on modelling rain attenuation statistics on earth-space links[J]. Chinese Journal of Radio Science, 2016, 31(3): 616-622. doi: 10.13443/j.cjors.2015081001.
    张在峰. 毫米波段雪的电磁散射及对雷达性能的影响[J]. 电波科学学报, 1999, 14(2): 178-185. doi: 10.13443/j.cjors.1999. 02.010.
    ZHANG Zaifeng. Electromagnetic scattering of snows and their effects on radar performance in MM wave band[J]. Chinese Journal of Radio Science, 1999, 14(2): 178-185. doi: 10.13443/j.cjors.1999.02.010.
    盛楠, 廖成, 张青洪, 等. 预测毫米波雾衰减的抛物方程模型研究[J]. 电子学报, 2014, 42(5): 958-962. doi: 10.3969/j.issn. 0372-2112.2014.05.019.
    SHENG Nan, LIAO Cheng, ZHANG Qinghong, et al. The parabolic equation model for estimating fog attenuation at millimeter wavelengths[J]. Acta Electronica Sinica, 2014, 42(5): 958-962. doi: 10.3969/j.issn.0372-2112.2014.05.019.
    张超, 朱莉, 林琳. 毫米波/亚毫米波大气传输特性研究[J]. 微波学报, 2015, 31(S2): 14-17.
    ZHANG Chao, ZHU Li, and LIN Lin. Research on the atmospheric transmission characteristics of millimeter wave/submillimeter wave[J]. Journal of Microwaves, 2015, 31(S2): 14-17.
    盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 416-419.
    SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric Physics[M]. Beijing: Beijing University Press, 2003: 416-419.
    弓树宏. 电磁波在对流层中传输与散射若干问题研究[D]. [博士论文], 西安电子科技大学, 2008: 31-32.
    GONG Shuhong. Research on several transmission and scattering of electromagnetic wave propagation problems in troposphere atmosphere[D]. [Ph.D. dissertation], Xidian University, 2008: 31-32.
    LIEBE H J, HUFFORD G A, and MANABE T. A model for the complex permittivity of water at frequencies below 1 THz[J]. International Journal of Infrared Millimeter Waves, 1991, 12(7): 659-667. doi: 10.1007/BF01008897.
    JONATHAN H J, and WU D L. Ice and water permittivities for millimeter and sub-millimeter remote sensing applications [J]. Atmospheric Science Letters, 2004, 5(7): 146-151. doi: 10.1002/asl.77.
    葛觐铭. 西北沙尘气溶胶光学特性反演与沙尘暴的卫星监测[D]. [博士论文], 兰州大学, 2010: 24-71.
    GE Jinming. Dust aerosols optical characteristics retrieval and satellite monitoring of duststorm over Northwestern[D]. [Ph.D. dissertation], Lanzhou University, 2010: 24-71.
    THURAI M, GATLIN P, BRINGI V N, et al. Very large rain drops from 2D video disdrometers and concomitant polarimetric radar observations[C]. The Eighth European Conference On Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, 2014: 231-231.
    BEARD K V, BRINGI V N, and THURAI M. A new understanding of raindrop shape[J]. Atmospheric Research, 2010, 97: 396-415. doi: 10.1016/j.atmosres.2010.02.001.
    PEERAMED C and HAJIME F. Improvement of depolarization formula using Gamma raindrop size distribution up to 100 GHz[C]. IEEE 4th Asia-Pacific Conference on Antennas and Propagation, Kuta, Indonesia, 2015: 497-500. doi: 10.1109/APCAP.2015.7374463.
    刘西川, 高太长, 刘磊, 等. 降水现象对大气消光系数和能见度的影响[J]. 应用气象学报, 2011, 21(4): 433-441. doi: 10.11898/1001-7313.20100406.
    LIU Xichuan, GAO Taichang, LIU Lei, et al. Influences of precipitation on atmospheric extinction coefficient and visibility[J]. Journal of Applied Meteorological Science, 2011, 21(4): 433-441. doi: 10.11898/1001-7313.20100406.
    MARTIN T and WALLIN M. Validation method for numerical simulations of large objects using the T-matrix for a collection of scatterers[C]. 2015 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2015: 1127-1130. doi: 10.1109/ICEAA.2015.7297294.
  • 加载中
计量
  • 文章访问数:  1462
  • HTML全文浏览量:  178
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-10-27
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回