高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

显著中心先验和显著-深度概率矫正的RGB-D显著目标检测

刘政怡 黄子超 张志华

刘政怡, 黄子超, 张志华. 显著中心先验和显著-深度概率矫正的RGB-D显著目标检测[J]. 电子与信息学报, 2017, 39(12): 2945-2952. doi: 10.11999/JEIT170235
引用本文: 刘政怡, 黄子超, 张志华. 显著中心先验和显著-深度概率矫正的RGB-D显著目标检测[J]. 电子与信息学报, 2017, 39(12): 2945-2952. doi: 10.11999/JEIT170235
LIU Zhengyi, HUANG Zichao, ZHANG Zhihua. RGB-D Saliency detection Based on Saliency Center Prior and Saliency-depth Probability Adjustment[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2945-2952. doi: 10.11999/JEIT170235
Citation: LIU Zhengyi, HUANG Zichao, ZHANG Zhihua. RGB-D Saliency detection Based on Saliency Center Prior and Saliency-depth Probability Adjustment[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2945-2952. doi: 10.11999/JEIT170235

显著中心先验和显著-深度概率矫正的RGB-D显著目标检测

doi: 10.11999/JEIT170235
基金项目: 

国家科技支撑计划(2015BAK24B00),安徽高校省级自然科学研究项目(KJ2015A009),安徽大学信息保障技术协同创新中心开放课题

RGB-D Saliency detection Based on Saliency Center Prior and Saliency-depth Probability Adjustment

Funds: 

The National Key Technology RD Program of the Ministry of Science and Technology of China (2015BAK24B00), The Key Program of Natural Science Project of Educational Commission of Anhui Province (KJ2015A009), The Open Issues on Co-Innovation Center for Information Supply Assurance Technology, Anhui University

  • 摘要: 随着深度特征在图像显著检测领域中发挥越来越重要的作用,传统的RGB图像显著检测模型由于未能充分利用深度信息已经不能适用于RGB-D图像的显著检测。该文提出显著中心先验和显著-深度(S-D)概率矫正的RGB-D显著检测模型,使得深度特征和RGB特征间相互指导,相互补充。首先,依据3维空间权重和深度先验获取深度图像初步显著图;其次,采用特征融合的流形排序算法获取RGB图像的初步显著图。接着,计算基于深度的显著中心先验,并以该先验作为显著权重进一步提升RGB图像的显著检测结果,获取RGB图像最终显著图;再次,计算显著-深度矫正概率,并对深度图的初步显著检测结果使用此概率进行矫正。接着,计算基于RGB的显著中心先验,并以该先验作为显著权重进一步提升深度图像矫正后的显著检测结果,获取深度图像的最终显著图;最后,采用优化框架对深度图像最终显著图进行优化得到RGB-D图像最终的显著图。所有的对比实验都是在公开的数据集NLPR RGBD-1000数据集上进行,实验结果显示该文算法较当前流行的算法有更好的性能。
  • DING Y Y, XIAO J, and YU J Y. Importance filtering for image retargeting[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2011: 89-96. doi: 10.1109/CVPR.2011.5995445.
    DONOSER M, URSCHLER M, HIRZER M, et al. Saliency driven total variation segmentation[C]. IEEE International Conference on Computer Vision, Kyoto, 2009: 817-824. doi: 10.1109/ICCV.2009.5459296.
    SRIVASTAVA S, MUKHERJEE P, and LALL B. Adaptive image compression using saliency and KAZE features[C]. International Conference on Signal Processing and Communications, Bangalore, 2016: 1-5. doi: 10.1109/ SPCOM.2016.7746680.
    SIAGIAN C and ITTI L. Rapid biologically-inspired scene classification using features shared with visual attention[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 300-312. doi: 10.1109/TPAMI.2007. 40.
    WANG X J, MA W Y, and LI X. Data-driven approach for bridging the cognitive gap in image retrieval[C]. IEEE International Conference on Multimedia and Expo, Taipei, 2004, 3: 2231-2234. doi: 10.1109/ICME.2004.1394714.
    MAHADEVAN V and VASCONCELOS N. Saliency-based discriminant tracking[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, 2009: 1007-1013. doi: 10.1109/CVPR. 2009.5206573.
    REN J, GONG X, YU L, et al. Exploiting global priors for RGB-D saliency detection[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, 2015: 25-32. doi: 10.1109/CVPRW.2015.7301391.
    LI W, QIU J, and LI X. Visual saliency detection based on gradient contrast and color complexity[C]. International Conference on Internet Multimedia Computing and Service, Zhangjiajie, China, 2015: 1-5. doi: 10.1145/2808492.2808534.
    ZHU H, SHENG B, LIN X, et al. Foreground object sensing for saliency detection[C]. ACM on International Conference on Multimedia Retrieval, New York, USA, 2016: 111-118. doi: 10.1145/2911996.2912008.
    WANG T, ZHANG L, LU H, et al. Kernelized subspace ranking for saliency detection[C]. European Conference on Computer Vision, Springer International Publishing, 2016: 450-466. doi: 10.1007/978-3-319-46484-8_27.
    QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 2015: 110-119. doi: 10.1109/CVPR.2015.7298606.
    LANG C, NGUYEN T V, KATTI H, et al. Depth matters: Influence of depth cues on visual saliency[J]. Lecture Notes in Computer Science, 2012(2): 101-115. doi: 10.1007/978-3-642- 33709-3_8.
    YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based Manifold Ranking[C]. IEEE Computer Vision and Pattern Recognition, Portland, OR, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    GUO J, REN T, BEI J, et al. Salient object detection in RGB-D image based on saliency fusion and propagation[C]. ACM International Conference on Internet Multimedia Computing and Service, Zhangjiajie, China, 2015: 59-63. doi: 10.1145/2808492.2808551.
    DESINGH K, MADHAVA K K, RAJAN D, et al. Depth really matters: improving visual salient region detection with depth[C]. British Machine Vision Conference, Bristol, 2013: 98.1-98.11. doi: 10.5244/C.27.98.
    CHENG M M, MITRA N J, HUANG X, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(3): 569-582. doi: 10.1109/TPAMI.2014.2345401.
    YANG C, ZHANG L, and LU H. Graph-regularized saliency detection with convex-hull-based center prior[J]. IEEE Signal Processing Letters, 2013, 20(7): 637-640. doi: 10.1109/LSP. 2013.2260737.
    HAREL J, KOCH C, and Perona P. Graph-based visual saliency[C]. Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2006: 545-552.
    ZHU W, LIANG S, Wei Y, et al. Saliency Optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    PENG H, LI B, XIONG W, et al. RGBD salient object detection: A benchmark and algorithms[J]. Lecture Notes in Computer Science, 2014, 8691: 92-109. doi: 10.1007/978-3- 319-10578-9_7.
    JU R, LIU Y, REN T, et al. Depth-aware salient object detection using anisotropic center-surround difference[J]. Image Communication, 2015, 38(C): 115-126. doi: 10.1016/ j.image.2015.07.002.
    CHENG Y, FU H, WEI X, et al. Depth enhanced saliency detection method[C]. Proceedings of International Conference on Internet Multimedia Computing and Service, Xiamen, 2014: 23-27. doi: 10.1145/2632856.2632866.
  • 加载中
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  247
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回