高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于概率图模型的多时相SAR相干变化检测方法

冀广宇 董勇伟 李焱磊 梁兴东

冀广宇, 董勇伟, 李焱磊, 梁兴东. 一种基于概率图模型的多时相SAR相干变化检测方法[J]. 电子与信息学报, 2017, 39(12): 2912-2920. doi: 10.11999/JEIT170208
引用本文: 冀广宇, 董勇伟, 李焱磊, 梁兴东. 一种基于概率图模型的多时相SAR相干变化检测方法[J]. 电子与信息学报, 2017, 39(12): 2912-2920. doi: 10.11999/JEIT170208
JI Guangyu, DONG Yongwei, LI Yanlei, LIANG Xingdong. A Multi-temporal SAR Coherent Change Detection Method Based on Probabilistic Graphical Models[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2912-2920. doi: 10.11999/JEIT170208
Citation: JI Guangyu, DONG Yongwei, LI Yanlei, LIANG Xingdong. A Multi-temporal SAR Coherent Change Detection Method Based on Probabilistic Graphical Models[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2912-2920. doi: 10.11999/JEIT170208

一种基于概率图模型的多时相SAR相干变化检测方法

doi: 10.11999/JEIT170208

A Multi-temporal SAR Coherent Change Detection Method Based on Probabilistic Graphical Models

  • 摘要: 相干变化检测(CCD)利用重轨SAR数据对场景中表现为低相干特性的变化区域具有良好的检测性能,然而场景中诸如植被、阴影、强散射旁瓣、低散射等区域也呈现低相干特性,对检测结果造成干扰,尤其在高波段SAR CCD中,对检测效果影响更加明显。该文利用多时相SAR数据形成的相干变化差异图像(CCD图像)建立概率图模型,提出一种多时相CCD处理方法。该方法以多时相CCD图像作为观测量,通过选取合适的参与处理图像数量及优化场景中变化区域的分类,计算目标变化区域的后验概率,可有效减小低相干干扰区域造成的影响。仿真和实测数据结果验证了该方法的正确性和有效性。
  • LIAO Mingsheng, JIANG Liming, LIN Hui, et al. Urban change detection based on coherence and intensity characteristics of SAR imagery[J]. Photogrammetric Engineering Remote Sensing, 2008, 74(8): 999-1006. doi: 10.14358/PERS.74.8.999.
    PREISS M and STACY N J S. Coherent change detection: Theoretical description and experimental results[R]. DSTO- TR-1851, 2006.
    JOHNSEN T. Coherent change detection in SAR images of harbors with emphasis on findings from container backscattering[C]. IEEE National Radar Conference, Kansas City, Missouri, USA, 2011: 118-123. doi: 10.1109/RADAR. 2011.5960512.
    JUNG J, KIM D, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765-5775. doi: 10.1109/TGRS.2016.2572166.
    YIN Qiang, LI Yang, HUANG Pingping, et al. Analysis of InSAR coherence loss caused by soil moisture variation [J]. Journal of Radars, 2015, 4(6): 689-697. doi: 10.12000/ JR15075.
    NEWEY M, BENITZ G, and KOGON S. A generalized likelihood ratio test for SAR CCD[C]. Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, California, USA, 2012: 1727-1730. doi: 10.1109/ ACSSC.2012.6489328.
    赵军香, 梁兴东, 李焱磊. 一种基于似然比统计量的SAR相干变化检测[J]. 雷达学报, 2017, 6(2): 186-194. doi: 10.12000/ JR16065.
    ZHAO Junxiang, LIANG Xingdong, and LI Yanlei. Change detection in SAR CCD based on the likelihood change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065.
    CHA M, PHILLIPS R D, and WOLFE P J. Test statistics for synthetic aperture radar coherent change detection[C]. IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, Michigan, USA, 2012: 856-859. doi: 10.1109/SSP.2012. 6319841.
    CHA M, PHILLIPS R D, WOLFE P J, et al. Two-stage change detection for synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6547-6560. doi: 10.1109/TGRS.2015.2444092.
    杨祥立, 徐德伟, 黄平平, 等. 融合相干/非相干信息的高分辨率SAR图像变化检测[J]. 雷达学报, 2015, 4(5): 582-590. doi: 10.12000/JR15073.
    YANG Xiangli, XU Dewei, HUANG Pingping, et al. Change detection of high resolution SAR images by the fusion of coherent/incoherent information[J]. Journal of Radars, 2015, 4(5): 582-590. doi: 10.12000/JR15073.
    WAHL D E, YOCKY D A, JAKOWATZ C V, et al. A new maximum-likelihood change estimator for two-pass SAR coherent change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2460-2469. doi: 10.1109/TGRS.2015.2502219.
    SCARBOROUGH S M, GORHAM L, MINARDI M J, et al. A challenge problem for SAR change detection and data compression[J]. SPIE Proceedings, 2010, 7699: 1-5. doi: 10. 1117/12.855378.
    AN Lin, LI Ming, ZHANG Peng, et al. Discriminative random fields based on maximum entropy principle for semisupervised SAR image change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3395-3404. doi: 10.1109/ JSTARS.2015.2483320.
    ZHOU Licun, CAO Guo, LI Yupeng, et al. Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3478-3488. doi: 10.1109/ JSTARS.2016.2514610.
    BARBER J and KOGON S. Probabilistic three-pass SAR coherent change detection[C]. Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, California, USA, 2012: 1723-1726. doi: 10.1109/ ACSSC.2012.6489327.
    刘云龙, 周良将, 李焱磊, 等. 一种改进的机载SAR二维空变辐射校准方法[J]. 国外电子测量技术, 2016, 35(8): 9-14. doi: 10.3969/j.issn.1002-8978.2016.08.003.
    LIU Yunlong, ZHOU Liangjiang, LI Yanlei, et al. Upgrade 2-D azimuth-variant radiometric calibration method for airborne SAR[J]. Foreign Electronic Measurement Technology, 2016, 35(8): 9-14. doi: 10.3969/j.issn.1002-8978.2016.08.003.
    邓袁. 机载重轨干涉SAR高精度配准算法研究[D]. [硕士论文], 中国科学院大学, 2014: 41-54.
    DENG Yuan. Research on highly precise registration algorithm of airborne repeat-pass interferometric SAR[D]. [Master dissertation], University of Chinese Academy of Sciences, 2014: 41-54.
    KOLLER D and FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques[M]. Cambridge, Massachusetts, USA London, England, The MIT Press, 2009: 45-102.
    TOIZI R, LOPES A, BRUNIQUEL J, et al. Coherence estimation for SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149. doi: 10.1109/36.739146.
  • 加载中
计量
  • 文章访问数:  1594
  • HTML全文浏览量:  170
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 修回日期:  2017-05-24
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回