ZHANG Tao, TANG Zhenmin, and L Jianyong. Improved algorithm based on low rank representation for subspace clustering[J]. Journal of Electronics Information Technology, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT 160009.
|
张涛, 唐振民, 吕建勇. 一种基于低秩表示的子空间聚类改进算法[J]. 电子与信息学报, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT160009.
|
王卫卫, 李小平, 冯象初, 等. 稀疏子空间聚类综述[J]. 自动化学报, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
|
WANG Weiwei, LI Xiaoping, FENG Xiangchu, et al. A survey on sparse subspace clustering[J]. Acta Automatica Sinica, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
|
YANG A, WRIGHT J, MA Y, et al. Unsupervised segmentation of natural images via lossy data compression[J]. Computer Vision and Image Understanding, 2008, 110(2): 212-225. doi: 10.1016/j.cviu.2007.07.005.
|
WRIGHT J, MAIRAL J, MA Y, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044. doi: 10.1109/JPROC. 2010.2044470.
|
LI C G, YOU C, and VIDAL R. Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2988-3001. doi: 10.1109/TIP.2017.2691557.
|
VIDAL R. Subspace clustering[J]. IEEE Signal Processing Magazine, 2011, 28(2): 52-68. doi: 10.1109/MSP.2010. 939739.
|
ELHAMIFAR E and VIDAL R. Sparse subspace clustering [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 2790-2797. doi: 10.1109/CVPR.2009.5206547.
|
ELHAMIFAR E and VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. doi: 10.1109/TPAMI.2013.57.
|
LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88.
|
LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
|
NG A Y, JORDAN M, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2001: 849-856.
|
PAN J, MATHIEU S, and HONG L. Efficient dense subspace clustering[C]. IEEE Winter Conference on Applications of Computer Vision, USA, 2014: 461-468. doi: 10.1109/WACV.2014.6836065.
|
ZHUANG L S, MA Y, LIN Z C, et al. Non-negative low-rank and sparse graph for semi-supervised learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 2328-2335. doi: 10.1109/CVPR.2012. 6247944.
|
PATEL V M, NGUYEN H V, and VIDAL R. Latent space sparse and low-rank subspace clustering[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(4): 691-701. doi: 10.1109/JSTSP.2015.2402643.
|
李波, 卢春园, 冷成财, 等. 基于局部图拉普拉斯约束的鲁棒低秩表示聚类方法[J]. 自动化学报, 2015, 41(11): 1971-1980. doi: 10.16383/j.aas.2015.c150031.
|
LI Bo, LU Chunyuan, LENG Chengcai, et al. Robust low rank subspace clustering based on local graph laplace constraint[J]. Acta Automatica Sinica, 2015, 41(11): 1971-1980. doi: 10.16383/j.aas.2015.c150031.
|
NIKOLOVA M. Local strong homogeneity of a regularized estimator[J]. SIAM Journal on Applied Mathematics, 2000, 61(2): 633-658. doi: 10.1137/S0036139997327794.
|
L J, and FAN Y. A unified approach to model selection and sparse recovery using regularized least squares[J]. The Annals of Statistics, 2009, 37(6A): 3498-3528. doi: 10.1214/ 09-AOS683.
|
ZHANG S, YIN P H, and JACK X. Transformed schatten iterative thresholding algorithms for matrix rank minimization and applications[J]. Arxiv Preprint, 2015, 1506. 04444. https://www.researchgate.net/publication/2784138 40.
|
ZHANG S and JACK X. Minimization of transformed L1 penalty: Theory, difference of convex function algorithm, and robust application in compressed sensing[J]. Arxiv Preprint, 2016, 1411.5735v3. https://arxiv.org/abs/1411.5735.
|
HORN R and JOHNSON C. Topics in Matrix Analysis[M]. Cambridge University Press, 1991: 144-163.
|
LIN Z C, CHEN M, and MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
|
吴杰祺, 李晓宇, 袁晓彤, 等. 利用坐标下降实行并行稀疏子空间聚类[J]. 计算机应用, 2016, 36(2): 372-376. doi: 10.11772/j.issn.1001-9081.2016.02.0372.
|
WU Jieqi, LI Xiaoyu, YUAN Xiaotong, et al. Parallel sparse subspace clustering via coordinate descent minimization[J]. Journal of Computer Applications, 2016, 36(2): 372-376. doi: 10.11772/j.issn.1001-9081.2016.02.0372.
|
VIDAL R and FAVARO P, A closed form solution to robust subspace estimation and clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, USA, 2011, 1801-1807. doi: 10.11091/CVPR.2011.5995365.
|
BERTSEKAS D. Constrained Optimization and Lagrange Multiplier Methods[M]. Belmont, MA, USA: Athena Scientific, 1996: 326-340.
|
CANDES E J, LI X D, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2010, 58(3): 11. doi: 10.1145/1970392.1970395.
|
GEORGHIADES A, BELHUMEUR P, and KRIEGMAN D. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 23(6): 643-660. doi: 10.1109/34.927464.
|
YAN J Y and POLLEYFEYS M. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[C]. Proceedings of the European Conference on Computer Vision, Graz, Austria, 2006: 94-106. doi: 10.1007/11744085_8.
|
FENG J S, LIN Z C, XU H, et al. Robust subspace segmentation with block-diagonal prior[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3818-3825. doi: 10.1109/CVPR.2014.482.
|
VIDAL R and FAVARO P. Low-rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. doi: 10.1016/j.patrec.2013.08.006.
|