田雪原. 人口老龄化与养老保险体制创新[J]. 人口学刊, 2014, 36(1): 5-15. doi: 10.3969/j.issn.1004-129X.2014.01.001.
|
TIAN Xueyuan. Population aging and endowment insurance system innovation[J]. Population Journal, 2014, 36(1): 5-15. doi: 10.3969/j.issn.1004-129X.2014.01.001.
|
唐雨欣, 郭小牧, 谯治蛟, 等. 北京, 上海社区老年人跌倒现况及影响因素研究[J]. 中华疾病控制杂志, 2017, 21(1): 72-76. doi: 10.16462/j.cnki.zhjbkz.2017.01.017.
|
TANG Yuxin, GUO Xiaomu, QIAO Zhijiao, et al. Analysis on prevalence and risk factors for falls among the elderly in communities of Beijing and Shanghai[J]. Chinese Journal of Disease Control Prevention, 2017, 21(1): 72-76. doi 10. 16462/j.cnki.zhjbkz. 2017.01.017.
|
KOSHMAK Gregory, LOUTFI Amy, and LINDEN Maria. Challenges and issues in multisensor fusion approach for fall detection: Review paper[J]. Journal of Sensors, 2016, 2016: Article ID 837459. doi: 10.1155/2016/6931789.
|
DEBARD Glen, MERTENS Marc, DESCHODT Mieke, et al. Camera-based fall detection using real-world versus simulated data: How far are we from the solution?[J]. Journal of Ambient Intelligence Smart Environments, 2016, 8(2): 149-168. doi: 10.3233/AIS-160369.
|
BALDEWIJNS Greet, DEBARD Glen, MERTES Gert, et al. Bridging the gap between real-life data and simulated data by providing a highly realistic fall dataset for evaluating camera-based fall detection algorithms[J]. Healthcare Technology Letters, 2016, 3(1): 6-11. doi: 10.1049/htl.2015. 0047
|
MAZUREK Pawel and MORAWSKI Roman Z. Application of nave Bayes classifier in fall detection systems based on infrared depth sensors[C]. Proceedings of the IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing System-Technology and Applications (IDAACS), Warsaw, Poland, 2015: 717-722. doi: 10.1109/ IDAACS.2015.7341397.
|
SALMAN KHAN Muhammad, YU Miao, FENG Pengming, et al. An unsupervised acoustic fall detection system using source separation for sound interference suppression[J]. Signal Processing, 2015, 110(C): 199-210. doi: 10.1016/j. sigpro.2014.08.021.
|
BECKER C, SCHWICKERT L, MELLONE S, et al. Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sensors[J]. Zeitschrift Fr Gerontologie Und Geriatrie, 2012, 45(8): 707-715. doi: 10.1007/s00391-012-0403-6.
|
WANG Jin, ZHANG Zhongqi, LI Bin, et al. An enhanced fall detection system for elderly person monitoring using consumer home networks[J]. IEEE Transactions on Consumer Electronics, 2014, 60(1): 23-29. doi: 10.1109/ TCE.2014.6780921.
|
QU Weihao, LIN Feng, WANG Aosen, et al. Evaluation of a low-complexity fall detection algorithm on wearable sensor towards falls and fall-alike activities[C]. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium. Philadelphia, PA, United States, 2015: 1-6. doi: 10.1109/ SPMB.2015.7405427.
|
QU Weihao, LIN Feng, and XU Wenyao. A real-time low-complexity fall detection system on the smartphone[C]. Proceedings of the IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies. Washington, DC, United States, 2016: 354-356. doi: 10.1109/CHASE.2016.73.
|
SALGADO Paulo and AFONSO Paulo. Body fall detection with Kalman filter and SVM[C]. Proceedings of the 11th Portuguese Conference on Automatic Control, Porto, Portugal, 2015, 321 LNEE: 407-416. doi: 10.1007/978-3-319- 10380-8_39.
|
BOURKE A K and LYONS G M. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor[J]. Medical Engineering Physics, 2008, 30(1): 84-90. doi: 10.1016/j.medengphy.2006.12.001.
|
陈航科, 张东升, 盛晓超, 等. 基于Kalman滤波算法的姿态传感器信号融合技术研究[J]. 传感器与微系统, 2013, 32(12): 82-85.
|
CHEN Hangke, ZHANG Dongsheng, SHENG Xiaochao, et al. Research on signal fusion technology of attitude sensor based on Kalman filtering algorithm[J]. Transducer and Microsystem Technologies, 2013, 32(12): 82-85. doi: 10.3969/ j.issn.1000-9787. 2013.12.023.
|
LI Qiang, STANKOVIC John A, HANSON Mark A, et al. Accurate, fast fall detection using gyroscopes and accelerometer derived posture information[C]. Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, United States, 2009: 138-143. doi: 10.1109/BSN.2009.46.
|
HE Jian and HU Chen. A portable fall detection and alerting system based on k-NN algorithm and remote medicine[J]. China Communications, 2015, 12(4): 23-31. doi: 10.1109/CC. 2015.7114066.
|
ERDOGAN Senol Zafer and BILGIN Turgay Tugay. A data mining approach for fall detection by using k-Nearest Neighbour algorithm on wireless sensor network data[J]. IET Communications, 2012, 6(18): 3281-3287. doi: 10.1049/ iet-com.2011.0228.
|