高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视频自然统计特性的无参考移动终端视频质量评价

施文娟 孙彦景 左海维 曹起

施文娟, 孙彦景, 左海维, 曹起. 基于视频自然统计特性的无参考移动终端视频质量评价[J]. 电子与信息学报, 2018, 40(1): 143-150. doi: 10.11999/JEIT170165
引用本文: 施文娟, 孙彦景, 左海维, 曹起. 基于视频自然统计特性的无参考移动终端视频质量评价[J]. 电子与信息学报, 2018, 40(1): 143-150. doi: 10.11999/JEIT170165
SHI Wenjuan, SUN Yanjing, ZUO Haiwei, CAO Qi. No-reference Mobile Video Quality Assessment Based on Video Natural Statistics[J]. Journal of Electronics & Information Technology, 2018, 40(1): 143-150. doi: 10.11999/JEIT170165
Citation: SHI Wenjuan, SUN Yanjing, ZUO Haiwei, CAO Qi. No-reference Mobile Video Quality Assessment Based on Video Natural Statistics[J]. Journal of Electronics & Information Technology, 2018, 40(1): 143-150. doi: 10.11999/JEIT170165

基于视频自然统计特性的无参考移动终端视频质量评价

doi: 10.11999/JEIT170165
基金项目: 

国家自然科学基金项目(51504214, 61771417),江苏省自然科学基金(BK20150204),国家重点研发计划(2016YFC0801403),江苏省重点研发计划项目(BE2015040),中国博士后基金(2015M 581884)

No-reference Mobile Video Quality Assessment Based on Video Natural Statistics

Funds: 

The National Natural Science Foundation of China (51504214, 61771417), The Natural Science Foundation of Jiangsu Province (BK20150204), The National Key Research and Development Program (2016YFC0801403), The Fundamental Research and Development Foundation of Jiangsu Province (BE2015040), China Postdoctoral Science Foundation (2015M 581884)

  • 摘要: 针对无线网络中压缩编码及无线丢包等因素对移动终端视频的降质影响,在分析视频相邻帧差信号空-时感知统计特性的基础上,该文提出一种基于视频自然统计特性的无参考移动终端视频质量评价(NMVQA)算法。进行视频帧差空-时自然统计规律分析,确定移动终端视频失真类型对视频相邻帧差系数统计特性的影响;计算水平、垂直、主对角线和副对角线方向的帧差相邻系数乘积分布参数的时域统计特性;以多尺度帧差相邻系数的时域统计特性相关程度来衡量移动终端视频失真程度。在LIVE移动视频数据库上的实验结果表明,该文所提算法的结果与主观评价具有较好的一致性,能够准确反映人类对视频失真程度的视觉感知效果,可为实时在线调节信源码率和无线信道参数提供参考依据。
  • SHAO Hua, WEN Xiangming, LU Zhaoming, et al. Reduced frame set on wireless distorted video for quality assessment[J]. The Journal of China Universities of Posts and Telecommunications, 2016, 23(4): 77-82. doi: 10.1016/S1005- 8885(16)60048-1.
    LIU Yan and LEE Jack Y B. Streaming variable bitrate video over mobile networks with predictable performance[C]. IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1-7. doi: 10.1109/WCNC.2016.7565108.
    MOORTHY A K, CHOI L K, BOVIK A C, et al. Video quality assessment on mobile devices: Subjective, behavioral and objective studies[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(6): 652-671. doi: 10.1109/JSTSP. 2012.2212417.
    SOUNDARARAJAN R and BOVIK A C. Video quality assessment by reduced reference spatio-temporal entropic differencing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(4): 684-694. doi: 10.1109/ TCSVT.2012.2214933.
    SAAD M A, BOVIK A C, and CHARRIER C. Blind prediction of natural video quality[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1352-1365. doi: 10.1109/TIP. 2014.2299154.
    MITTAL A, SAAD M A, and BOVIK A C. A completely blind video integrity oracle[J]. IEEE Transactions on Image Processing, 2016, 25(1): 289-300. doi: 10.1109/TIP.2015. 2502725.
    HSIAO Yimao, LEE Jengfarn, CHEN Jaishiarng, et al. H.264 video transmissions over wireless networks: challenges and solutions[J]. Computer Communications, 2011, 34: 1661-1672. doi: 10.1016/j.comcom.2011.03.016.
    YU Qingqing and SUN Songlin. Mobile video perception assessment model based on QoE[C]. 16th International Symposium on Communications and Information Technologies, Qingdao, China, 2016: 642-645. doi: 10.1109/ ISCIT.2016.7751712.
    陈希宏, 金跃辉, 杨谈. 3G网络中移动视频质量评估模型的研究[J]. 计算机科学, 2015, 42(9): 86-93.
    CHEN Xihong, JIN Yuehui, and YANG Tan. Study on quality assessment model for mobile videos over 3G network [J]. Computer Science, 2015, 42(9): 86-93.
    SONG Wei and TJONDRONEGORO D W. Acceptablity- based QoE models for mobile video[J]. IEEE Transactions on Multimedia, 2014, 3(16): 738-750. doi: 10.1109/TMM.2014. 2298217.
    OLSON S and GROSSBERG S. A neural network for the develop of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance[J]. Neural Networks, 1998, 11(2): 189-208. doi: 10.1016/s0893-6080(98) 00003-3.
    FREEMAN J and SIMONCELLI E P. Metamers of the ventral stream[J]. Nature Neuroscience, 2011, 14(9): 1195-1201. doi: 10.1038/nn.2889.
    LASMAR N E, STITOU Y, and BERTHOUMIEU Y. Multiscale skewed heavy tailed model for texture analysis[C]. 2009 IEEE International conference on Image Processing, Cairo, Egypt, 2009: 2281-2284. doi: 10.1109/icip.2009. 5414404.
    MITTAL A, MOOTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. doi: 10.1109/tip.2012.2214050.
    孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127-134. doi: 10.11999/JEIT150616.
    SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple- scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics Information Technology, 2016, 38(1): 127-134. doi: 10.11999 /JEIT150616.
    WANG Z, LU L, and BOVIK A C. Image quality assessment: from error measurement to structural similarity[J]. IEEE Signal Process Letter, 2004, 13(4): 600-612. doi: 10.1109/tip. 2003.819861.
  • 加载中
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  232
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-27
  • 修回日期:  2017-10-23
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回