高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种双基星载MIMO SAR系统体制与处理方法

叶恺 禹卫东 王伟

叶恺, 禹卫东, 王伟. 一种双基星载MIMO SAR系统体制与处理方法[J]. 电子与信息学报, 2017, 39(11): 2697-2704. doi: 10.11999/JEIT170149
引用本文: 叶恺, 禹卫东, 王伟. 一种双基星载MIMO SAR系统体制与处理方法[J]. 电子与信息学报, 2017, 39(11): 2697-2704. doi: 10.11999/JEIT170149
YE Kai, YU Weidong, WANG Wei. Investigation on System Scheme and Processing Approach for Bistatic Spaceborne MIMO SAR[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2697-2704. doi: 10.11999/JEIT170149
Citation: YE Kai, YU Weidong, WANG Wei. Investigation on System Scheme and Processing Approach for Bistatic Spaceborne MIMO SAR[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2697-2704. doi: 10.11999/JEIT170149

一种双基星载MIMO SAR系统体制与处理方法

doi: 10.11999/JEIT170149

Investigation on System Scheme and Processing Approach for Bistatic Spaceborne MIMO SAR

  • 摘要: 双基星载合成孔径雷达(SAR)利用双平台接收以及联合处理回波信号,在测绘、干涉测量、目标识别、自然灾害监测等领域有重要的应用价值。为了进一步提升该体制的成像性能,该文提出一种采用空时编码和短偏移正交波形的双基星载多发多收合成孔径雷达系统(MIMO SAR)。基于接收端的数字波束形成技术,该系统能够有效分离提取不同波形回波数据,获取更多空间自由度,从而同时具备双基体制和MIMO体制的优势。此外,通过对获取的不同波形图像数据做波束形成处理,该系统能够减轻2次散射干扰回波对SAR图像的影响。仿真实验验证了该系统方案的有效性。
  • MARC R, PRATS P, SCHULZE D, et al. First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 33-37. doi: 10.1109/LGRS.2011.2158984.
    ZINK M, BACHMANN M, BRAUTIGAM B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8-23. doi: 10.1109/MGRS.2014.2318895.
    BUESO J, PRATS P, MARTONE M, et al. Performance evaluation of the TanDEM-X quad polarization acquisitions in the science phase[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 627-632.
    MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8-23. doi: 10.1109/MGRS.2015.2437353.
    HUBER S, VILLANO M, YOUNIS M, et al. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 1237-1241.
    WANG Wenqin. MIMO SAR imaging: potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18-23. doi: 10.1109/MAES.2013. 6575407.
    KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453-2466. doi: 10.1109/TGRS.2014.2360148.
    KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 91-96.
    WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625. doi: 10.1109/TGRS.2014.2346478.
    KRIEGER G, HUBER S, VILLANO M, et al. SIMO and MIMO system architectures and modes for high-resolution ultra-wide-swath SAR imaging[C]. Preceedings of EUSAR 2016, Hamburg, Germany, 2016: 187-192.
    MENG Cangzhen, XU Jia, XIA Xianggen, et al. MIMO-SAR waveform separation based on inter-pulse phase modulation and range-doppler decouple filtering[J]. Electronics Letters, 2013, 49(6): 420-422. doi: 10.1049/el.2013.0016.
    KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. doi: 10.1109/TGRS.2007.905974.
    KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. doi: 10.1109/TGRS.2013.2263934.
    KIM J, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568-572. doi: 10.1109/LGRS.2012.2213577.
    WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218-5228. doi: 10.1109/TGRS. 2015.2419271.
    WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094-3104. doi: 10.1109/ TGRS.2011.2116030.
    WANG Jie, LIANG Xingdong, CHEN Longyong, et al. A novel space-time coding scheme used for MIMO-SAR systems [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556-1560. doi: 10.1109/LGRS.2015.2412961.
    FENG Fan, LI Shiqiang, YU Weidong, et al. Echo separation in multi- dimensional waveform encoding SAR remote sensing using an advanced null-steering beam-former[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4157-4172. doi: 10.1109/TGRS.2012.2187905.
    VAN TREES H. L. Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley Sons, 2002: 90-204.
    KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264. doi: 10.1109/LGRS.2004. 832700.
  • 加载中
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  105
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-24
  • 修回日期:  2017-08-19
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回