高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原模图LDPC码的分布式联合信源信道编码

洪少华 王琳

洪少华, 王琳. 基于原模图LDPC码的分布式联合信源信道编码[J]. 电子与信息学报, 2017, 39(11): 2594-2599. doi: 10.11999/JEIT170113
引用本文: 洪少华, 王琳. 基于原模图LDPC码的分布式联合信源信道编码[J]. 电子与信息学报, 2017, 39(11): 2594-2599. doi: 10.11999/JEIT170113
HONG Shaohua, WANG Lin. Protograph LDPC Based Distributed Joint Source Channel Coding[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2594-2599. doi: 10.11999/JEIT170113
Citation: HONG Shaohua, WANG Lin. Protograph LDPC Based Distributed Joint Source Channel Coding[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2594-2599. doi: 10.11999/JEIT170113

基于原模图LDPC码的分布式联合信源信道编码

doi: 10.11999/JEIT170113
基金项目: 

福建省自然科学基金(2014J01248),国家自然科学基金(61271241, 61671395)

Protograph LDPC Based Distributed Joint Source Channel Coding

Funds: 

The Natural Science Foundation of Fujian Province (2014J01248), The National Natural Science of Foundation of China (61271241, 61671395)

  • 摘要: 该文提出一种基于原模图低密度奇偶校验(P-LDPC)码的分布式联合信源信道编译码系统方案。该方案编码端,分布式信源发送部分信息位及校验位以同时实现压缩及纠错功能;译码端,联合迭代信源信道译码的运用进一步发掘信源的相关性以获得额外的编码增益。此外,论文研究了所提方案在译码端未知相关性系数的译码算法。仿真结果表明,所提出的基于P-LDPC码的分布式联合信源信道编译码方案在外部迭代次数不大的情况可以获得较大的性能增益,并且相关性系数在译码端已知和未知系统性能基本相当。
  • QIN Zhichao, ZHOU Zheng, and ZHAO Xiaochuan. A distributed source coding algorithm for clustering wireless sensor networks[J]. Journal of Electronics Information Technology, 2013, 35(2): 328-334. doi: 10.3724/SP.J.1146. 2012.00723.
    秦智超, 周正, 赵小川. 一种分簇无线传感器网络中的分布式信源编码算法[J]. 电子与信息学报, 2013, 35(2): 328-334. doi: 10.3724/SP.J.1146.2012.00723.
    宋娟, 吴成柯, 张静, 等. 基于分类和陪集码的高光谱图像无损压缩[J]. 电子与信息学报, 2011, 33(1): 231-234. doi: 10.3724/SP.J.1146.2010.00274.
    SONG Juan, WU Chengke, ZHANG Jing, et al. Lossless compression of hyperspectral images based on classification and coset coding[J]. Journal of Electronics Information Technology, 2011, 33(1): 231-234. doi: 10.3724/SP.J.1146. 2010.00274.
    ZHANG J, LI H, and CHEN C. Distributed lossless coding techniques for hyperspectral images[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(6): 977-989. doi: 10.1109/JSTSP.2015.2402118.
    QIAN Z and ZHANG X. Reversible data hiding in encrypted images with distributed source encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(4): 636-646. doi: 10.1109/TCSVT.2015.2418611.
    FANG Y, STANKOVIC V, CHENG S, el al. Analysis on tailed distributed arithmetic codes for uniform binary sources [J]. IEEE Transactions on Communications, 2016, 64(10): 4305-4319. doi: 10.1109/TCOMM.2016.2599535.
    ALJOHANI A, NG S, and HANZO L. Distributed source coding and its applications in relaying-based transmission[J]. IEEE Access, 2016, 4: 1940-1970. doi: 10.1109/ACCESS.2016. 2537739.
    PRADHAN S and RAMCHANDRAN K. Distributed source coding using syndromes (DISCUS): Design and construction [J]. IEEE Transactions on Information Theory, 2003, 49(3): 626-643. doi: 10.1109/TIT.2002.808103.
    GEHRIG N and DRAGOTTI P. Symmetric and asymmetric Slepian-Wolf codes with systematic and non-systematic linear codes[J]. IEEE Communications Letters, 2005, 9(1): 61-63. doi: 10.1109/LCOMM.2005.1375242.
    LIVERIS A, XIONG Z, and GEORGHIADES C. Compression of binary sources with side information at the decoder using LDPC codes[J]. IEEE Communications Letters, 2002, 6(10): 440-442. doi: 10.1109/LCOMM.2002.804244.
    ALJOHANI A, BABAR Z, NG S, el al. Distributed source-channel coding using reduced-complexity syndrome- based TTCM[J]. IEEE Communications Letters, 2016, 20(10): 2095-2098. doi: 10.1109/LCOMM.2016.2584598.
    GARCIA-FRIAS J and CABARCAS F. Approaching the Slepian-Wolf boundary using practical channel codes[J]. Signal Processing, 2006, 86(11): 3096-3101. doi: 10.1016/ j.sigpro.2006.03.018.
    SARTIPI M and FEKRI F. Distributed source coding using short to moderate length rate-compatible LDPC codes: The entire Slepian-Wolf rate region[J]. IEEE Transactions on Communications, 2008, 56(3): 400-411. doi: 10.1109/ TCOMM.2008.060006.
    CEN F. Distributed joint source and channel coding with low-density parity-check codes[J]. IEEE Communications Letters, 2013, 17(12): 2336-2339. doi: 10.1109/LCOMM.2013. 101613.131616.
    VAEZI M and LABEAU F. Distributed source-channel coding based on real-field BCH codes[J]. IEEE Transactions Signal Processing, 2014, 62(5): 1171-1184. doi: 10.1109/TSP. 2014.2300039.
    DELIGIANNIS N, ZIMOS E, OFRIM D, et al. Distributed joint source-channel coding with copula-function-based correlation modeling for wireless sensors measuring temperature[J]. IEEE Sensors Journal, 2015, 15(8): 4496-4507. doi: 10.1109/JSEN.2015.2421821.
    GARCIA-FRIAS J and ZHAO Y. Near-Shannon/Slepian- Wolf performance for unknown correlated sources over AWGN channels[J]. IEEE Transactions on Communications, 2005, 53(4): 555-559. doi: 10.1109/TCOMM.2005.844959.
    ARCIA-FRIAS J, ZHAO Y, and ZHONG W. Turbo-like codes for transmission of correlated sources over noisy channels[J]. IEEE Signal Processing Magazine, 2007, 24(5): 58-66. doi: 10.1109/MSP.2007.904813.
    SHAHID I and YAHAMPATH P. Distributed joint source- channel coding using unequal error protection LDPC codes[J]. IEEE Transactions on Communications, 2013, 61(8): 3472-3482. doi: 10.1109/TCOMM.2013.070213.120264.
    THORPE J. Low-density parity-check (LDPC) codes constructed from protographs[R]. IPN Progress Report 42-154, JPL, 2003.
    DANESHGARAN F, LADDOMADA M, and MONDIN M. LDPC-based channel coding of correlated sources with iterative joint decoding[J]. IEEE Transactions on Communications, 2006, 54(4): 577-582. doi: 10.1109/ TCOMM.2006.873062.
  • 加载中
计量
  • 文章访问数:  1335
  • HTML全文浏览量:  195
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-10
  • 修回日期:  2017-05-31
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回