高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于心动周期估计的心音分割及异常心音筛查算法

赵湛 张旭茹 方震 陈贤祥 杜利东 李田昌

赵湛, 张旭茹, 方震, 陈贤祥, 杜利东, 李田昌. 基于心动周期估计的心音分割及异常心音筛查算法[J]. 电子与信息学报, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
引用本文: 赵湛, 张旭茹, 方震, 陈贤祥, 杜利东, 李田昌. 基于心动周期估计的心音分割及异常心音筛查算法[J]. 电子与信息学报, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
ZHAO Zhan, ZHANG Xuru, FANG Zhen, CHEN Xianxiang, DU Lidong, LI Tianchang. Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
Citation: ZHAO Zhan, ZHANG Xuru, FANG Zhen, CHEN Xianxiang, DU Lidong, LI Tianchang. Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108

基于心动周期估计的心音分割及异常心音筛查算法

doi: 10.11999/JEIT170108
基金项目: 

国家自然科学基金(61302033),北京市自然科学基金(Z160003),国家重点研发计划(2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation

Funds: 

The National Natural Science Foundation of China (61302033), The Beijing Municipal Natural Science Foundation (Z160003), The National Key Research and Development Project (2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

  • 摘要: 心脏疾病是全球发病率和死亡率最高的疾病,心音听诊可以获取心脏的机械特性及结构特征,与超声心动图、核磁共振等无创诊断技术相比具有快速、低成本和操作简单的优势。心音信号成分复杂,容易受到各种噪声和干扰的影响,听诊诊断结果容易受到医生主观性的影响,极大限制了心音听诊的应用。该文提出一种基于心动周期估计的心音分割及异常心音筛查算法,预先估计了心音的心动周期,存在随机干扰的情况下也可以正确识别信号中80%以上的心动周期,提高了算法的稳定性。同时提出了区分度良好的时域和频域特征指标,利用支持向量机建模,对异常心音的识别率可达92%。算法可辅助医生诊断,或用于家用便携式心音监护设备。
  • KIM S and HWANG D. Murmur-adaptive compression technique for phonocardiogram signals[J]. Electronics Letters, 2016, 52(3): 183-184. doi: 10.1049/el.2015.3449.
    RANDHAWA S K and SINGH M. Classification of heart sound signals using multi-modal features[J]. Procedia Computer Science, 2015, 58: 165-171. doi: 10.1016/j.procs. 2015.08.045.
    Bank I, VLIEGEN H W, and BRUSCHKE A V. The 200th anniversary of the stethoscope: Can this low-tech device survive in the high-tech 21st century[J]. European Heart Journal, 2016, 37(47): 3536-3543. doi: 10.1093/eurheartj /ehw034.
    赵彩华, 刘琚, 孙建德, 等. 基于小波变换和独立分量分析的含噪混叠语音盲分离[J]. 电子与信息学报, 2006, 28(9): 1565-1568.
    ZHAO Caihua, LIU Ju, SUN Jiande, et al. Blind separation of noisy speech mixtures based on wavelet transform and independent component analysis[J]. Journal of Electronics Information Technology, 2006, 28(9): 1565-1568.
    SAFARA F. Cumulant-based trapezoidal basis selection for heart sound classification[J]. Medical Biological Engineering Computing, 2015, 53(11): 1153-1164. doi: 10. 1007/s11517-015-1394-4.
    JATUPAIBOON N, PAN-NGUM S, and ISRASENA P. Electronic stethoscope prototype with adaptive noise cancellation[C]. 8th International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2010: 32-36.
    CHENG Xiefeng and LI Wei. Research on heart-sound graphical processing methods based on heart-sounds window function[J]. Acta Physica Sinica, 2015, 64(5): 58703. doi: 10.7498/aps.64.058703.
    VARGHEES V N and RAMACHANDRAN K I. A novel heart sound activity detection framework for automated heart sound analysis[J]. Biomedical Signal Processing Control, 2014, 13(1): 174-188. doi: 10.1016/j.bspc.2014.05. 002.
    CHAKRABARTI T, SAHA S, ROY S, et al. Phonocardiogram signal analysis-practices, trends and challenges: A critical review[C]. International Conference and Workshop on Computing and Communication, Vancouver, Canada, 2015: 1-4.
    SHARMA L N. Multiscale analysis of heart sound for segmentation using multiscale hilbert envelope[C]. International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2015: 33-37.
    SPRINGER D, TARASSENKO L, and CLIFFORD G. Logistic regression-HSMM-based heart sound segmentation [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 822-832. doi: 10.1109/TBME.2015.2475278.
    HOYOS C C, MURILLO-RENDON S, and CASTELLANOS- DOMINGUEZ C G. Heart Sound Segmentation in Noisy Environments[M]. Berlin: Springer, 2013: 254-263.
    PAPADANIIL C D and HADJILEONTIADIS L J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features[J]. IEEE Journal of Biomedical Health Informatics, 2014, 18(4): 1138-1152. doi: 10.1109/JBHI.2013.2294399.
    MOHAMAD M M, SH-HUSSAIN H, TING C M, et al. Heart sound monitoring system[J]. Journal of Engineering Applied Sciences, 2016, 11(7): 4748-4755.
    BRUSCO M and NAZERAN H. Development of an intelligent PDA-based wearable digital phonocardiograph[C]. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 3506-3509.
    CLIFFORD G D, LIU C, MOODY B, et al. Classification of normal/abnormal heart sound recordings: the physioNet/ computing in cardiology challenge 2016[C]. Computing in Cardiology, Vancouver, Canada, 2016: 609-612.
    MOHAMMAD A, ABTAHI M, CONSTANT N, et al. Mobile phonocardiogram diagnosis in newborns using support vector machine[J]. Healthcare, 2017, 5(1): 16-26. doi: 10.3390/ healthcare5010016.
    ZHANG W, HAN J, and DENG S. Heart sound classification based on scaled spectrogram and partial least squares regression[J]. Biomedical Signal Processing Control, 2017, 32(2): 20-28. doi: 10.1016/j.bspc.2016.10.004.
    KAO W C and WEI C C. Automatic phonocardiograph signal analysis for detecting heart valve disorders[J]. Expert Systems with Applications, 2011, 38(6): 6458-6468. doi: 10.1016/j.eswa.2010.11.100.
    徐长发, 李国宽. 实用小波方法[M]. 武汉: 华中科技大学出版社, 2009: 100-101.
    XU Changfa and LI Guokuan. Practical Wavelet Method[M]. Wuhan: Huazhong University of Science Technology Press, 2009: 100-101.
    蒲秀娟, 曾孝平, 韩亮, 等. 基于最小二乘支持向量机的胎儿心电信号提取[J]. 电子与信息学报, 2009, 31(12): 2941-2947.
    PU Xiujuan, ZENG Xiaoping, HAN Liang, et al. Extraction of fetal electrocardiogram signal using least squares support vector machines[J]. Journal of Electronics Information Technology, 2009, 31(12): 2941-2947.
    KRISTOMO D, HIDAYAT R, SOESANTI I, et al. Heart sound feature extraction and classification using autoregressive power spectral density (AR-PSD) and statistics features[C]. Advances of Science and Technology for Society: Proceedings of the International Conference on Science and Technology, Yogyakarta, Indonesia, 2016: (090007-1-090007-7).
  • 加载中
计量
  • 文章访问数:  1524
  • HTML全文浏览量:  184
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-10
  • 修回日期:  2017-04-20
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回