高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂电磁环境下通信装备干扰预测方法

李伟 魏光辉 潘晓东 王雅平 万浩江 孙梳清

李伟, 魏光辉, 潘晓东, 王雅平, 万浩江, 孙梳清. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11): 2782-2789. doi: 10.11999/JEIT170107
引用本文: 李伟, 魏光辉, 潘晓东, 王雅平, 万浩江, 孙梳清. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11): 2782-2789. doi: 10.11999/JEIT170107
LI Wei, WEI Guanghui, PAN Xiaodong, WANG Yaping, WAN Haojiang, SUN Shuqing. Interference Prediction Method of Communication Equipment Under Complex Electromagnetic Environment[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2782-2789. doi: 10.11999/JEIT170107
Citation: LI Wei, WEI Guanghui, PAN Xiaodong, WANG Yaping, WAN Haojiang, SUN Shuqing. Interference Prediction Method of Communication Equipment Under Complex Electromagnetic Environment[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2782-2789. doi: 10.11999/JEIT170107

复杂电磁环境下通信装备干扰预测方法

doi: 10.11999/JEIT170107
基金项目: 

国家自然科学基金(61372040)

Interference Prediction Method of Communication Equipment Under Complex Electromagnetic Environment

Funds: 

The National Natural Science Foundation of China (61372040)

  • 摘要: 该文通过通信装备带内电磁干扰效应机理研究,分别以峰值场强敏感和平均功率敏感为基础,建立了两种用频装备带内多频电磁干扰预测模型,提出一种电磁干扰预测方法。首先通过单频和调幅波试验确定受试装备的敏感参量,然后根据不同敏感参量模型对某电磁环境下受试装备是否会受到干扰进行预测。该文以不同制式通用通信装备为试验对象,通过带内双频、带内三频电磁辐射效应试验对预测方法进行了验证。试验结果表明:通过单频和调幅连续波电磁辐射敏感度之间的差别能够区分受试设备符合哪种带内多频电磁干扰预测模型,对干扰峰值场强敏感的EUT1预测模型效应指数都略大于1,对干扰平均功率敏感的EUT2预测模型效应指数都在1左右。以此为基础提出了通信装备带内多频电磁干扰预测方法,能够有效解决通信装备带内多频电磁干扰预测问题。
  • 刘培国, 覃宇建, 周东明, 等. 电磁兼容基础[M]. 北京: 电子工业出版社, 2015: 259-261.
    LIU Peiguo, QIN Yujian, ZHOU Dongming, et al. Electromagnetic Compatibility Fundamentals[M]. Beijing: Publishing House of Electronics Industry, 2015: 259-261.
    GJB 151B-2013. 军用设备和分系统电磁发射和敏感度要求与测量[S]. 2013.
    GJB 151B-2013. Electromagnetic emission and susceptibility requirements and measurments for military equipment and subsystems[S]. 2013.
    MARDIGUIAN M. Combined effects of several simultaneous EMI couplings[C]. IEEE International Symposium on EMC, 2000: 181-184.
    GROMMES W and ARMSTRONG K. Developing immunity testing to cover intermodulation[C]. IEEE International Symposium on EMC, 2011: 999-1004.
    DUFFY A, ORLANDI A, and ARMSTRONG K. Preliminary study of a reverberation chamber method for multiple-source testing using intermodulation[J]. IET Science, Measurement and Technology, 2010, 4(1): 21-27.
    WANG Guosheng and QI Zongfeng. AHP effectiveness evaluation of electronic warfare command and control system under complex electromagnetic[J]. Advanced Materials Research, 2014, 989-994: 3212-3215.
    AI-Badi A H, Ghania S M, and EL-Saadany E F. Prediction of metallic conductor voltage owing to electromagnetic coupling using neuro fuzzy modeling[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 319-327.
    GUO Shuxia, Dong Zhongyao, HU Zhantao, et al. Simulation of dynamic electromagnetic interference environment for unmanned aerial vehicle data link[J]. China Communications, 2013, 10(7): 19-28.
    YAN Liping, ZHAO Xiang, ZHAN Hang, et al. Artificial neural network modeling of electromagnetic interference caused by nonlinear devices inside a metal enclosure[J]. Journal of Electromagnetic Waves Application, 2015, 29(8): 992-1004.
    CEPERIC V, GIELEN G, and BARIC A. Black-box modeling of conducted electromagnetic immunity by support vector machines[C]. International Symposium on Electromagnetic Compatibility (EMC Europe), Rome, Italy, 2012, 1-6.
    张薇玮, 丁文锐, 刘春辉. 复杂环境中无人机数据链干扰效果预测方法[J]. 系统工程与电子技术, 2016, 38(4): 760-766. doi: 10.3969/j.issn.1001-506X.2016.04.06.
    ZHANG Weiwei, DING Wenrui, and LIU Chunhui. Prediction of interference effect on UAV data link in complex environment[J]. Systems Engineering and Electronics, 2016, 38(4): 760-766. doi: 10.3969/j.issn.1001-506X.2016.04.06.
    魏光辉, 耿利飞, 潘晓东. 通信电台电磁辐射效应机理[J]. 高电压技术, 2014, 40(9): 2685-2692. doi: 10.13336/j.1003-6520. hve.2014.09.011.
    WEI Guanghui, GENG Lifei, and PAN Xiaodong. Mechanism of electromagnetic radiation effects for communication equipment[J]. High Voltage Engineering, 2014, 40(9): 2685-2692. doi: 10.13336/j.1003-6520.hve.2014.09.011.
    OTT W H. Electromagnetic Compatibility Engineering[M]. New York, Publishing House of Wiley, 2011.
    李伟, 魏光辉, 潘晓东, 等. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38(11): 2474-2480. doi: 10.3969/j.issn.1001-506X.2016.11.04.
    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38(11): 2474-2480. doi: 10.3969/j.issn.1001 -506X.2016.11.04.
    李伟, 魏光辉, 潘晓东, 等. 典型通信装备电磁敏感度判据研究[J]. 微波学报, 2016, 32(6): 70-75. dio: 10.14183/j.cnki. 1005-6122.201606017.
    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Research on electromagnetic susceptibility criterion for typical communication equipment[J]. Journal of Microwaves, 2016, 32(6): 70-75. dio: 10.14183/j.cnki.1005-6122.201606017.
  • 加载中
计量
  • 文章访问数:  1350
  • HTML全文浏览量:  233
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-10
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回