高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于m-序列的跳频序列集的构造与二维相关性分析

刘元慧 许成谦 方汶铭

刘元慧, 许成谦, 方汶铭. 基于m-序列的跳频序列集的构造与二维相关性分析[J]. 电子与信息学报, 2017, 39(10): 2449-2455. doi: 10.11999/JEIT170051
引用本文: 刘元慧, 许成谦, 方汶铭. 基于m-序列的跳频序列集的构造与二维相关性分析[J]. 电子与信息学报, 2017, 39(10): 2449-2455. doi: 10.11999/JEIT170051
LIU Yuanhui, XU Chengqian, FANG Wenming. Construction and Two-dimensional Correlation Analysis of Frequency Hopping Sequences Based on m-Sequence[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2449-2455. doi: 10.11999/JEIT170051
Citation: LIU Yuanhui, XU Chengqian, FANG Wenming. Construction and Two-dimensional Correlation Analysis of Frequency Hopping Sequences Based on m-Sequence[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2449-2455. doi: 10.11999/JEIT170051

基于m-序列的跳频序列集的构造与二维相关性分析

doi: 10.11999/JEIT170051
基金项目: 

国家自然科学基金(61671402, 11304270),河北省自然科学基金(F2015203150),博士后基金(2015M570234)

Construction and Two-dimensional Correlation Analysis of Frequency Hopping Sequences Based on m-Sequence

Funds: 

The National Natural Science Foundation of China (61671402, 11304270), The Natural Science Foundation of Hebei Province (F2015203150), The Postdoctoral Foundation (2015M570234)

  • 摘要: 在雷达等高速移动的通信系统中,由于传输过程中的时延和多普勒频移,在分析跳频序列的性能时,需要对其时频2维汉明相关性进行分析。线性移位寄存器序列(m-序列)具有良好的随机、平衡等性质,因此m-序列已被广泛应用到跳频序列的构造中。该文对基于m-序列的跳频序列集的时频2维汉明相关性进行分析,计算了其时频2维汉明相关值的分布;构造了具有新参数的跳频序列集。在相同多普勒频移下,新序列集的2维相关性与已有基于m-序列的跳频序列集的2维相关性相比较更稳定。
  • MEI Wenhua. Frequency Hopping Sequences Design[M]. Beijing: National Defense Industry Press, 2016: 1-19.
    梅文华. 跳频序列设计[M]. 北京: 国防工业出版社, 2016: 1-19.
    刘元慧, 许成谦. 两类跳频序列集时频二维汉明相关性的分析[J]. 系统工程与电子技术, 已接收.
    LIU Yuanhui and XU Chengqian. Analysis of time-frequency two-dimensional Hamming correlation of two frequency hopping sequence sets[J]. Systems Engineering and Electronics, accepted.
    LEMPEL A and GREENBERGER H. Families of sequences with optimal Hamming correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1): 90-94. doi: 10.1109/TIT.1974.1055169.
    梅文华, 陈先福. 具有最佳汉明相关性能的跳频序列族[J]. 国防科技大学学报, 1988, 10(4): 13-19.
    MEI Wenhua and CHEN Xianfu. Families of frequency- hopping sequences with optimal Hamming correlation properties[J]. Journal of National University of Defense Technology, 1988, 10(4): 13-19.
    梅文华. 基于m-序列构造最佳跳频序列族[J]. 通信学报, 1991, 12(1): 70-73.
    MEI Wenhua. Construct optimal families of frequency- hopping sequences basing on m-sequences[J]. Journal of China Institute of Communications, 1991, 12(1): 70-73.
    HAN Hongyu, PENG Daiyuan, and UDAYA P. New sets of optimal low-hit-zone frequency-hopping sequences based on m-sequences[J]. Cryptography Communication, 2017, 9(4): 511-522. doi: 10.1007/s12095-016-0192-7.
    ZHOU Limengnan, PENG Daiyuan, LIANG Hongbin, et al. Constructions of optimal low-hit-zone frequency hopping sequence sets[J]. Designs, Codes and Cryptography, 2016, (online first): 1-14. doi: 10.1007/s10623-016-0299-z.
    MEI Wenhua and YANG Yixian. Families of FH sequences based on pseudorandom sequences over GF(p)[C]. International Conference on Communication Technology Proceedings, Beijing, China, 2000, Vol. 1: 536-538. doi: 10.1109/ICCT.2000.889261.
    梅文华, 杨义先. 基于GF上m-序列的最佳跳频序列族[J]. 通信学报, 1996, 17(2): 12-16.
    MEI Wenhua and YANG Yixian. Optimal families of FH sequences based on m-sequences over GF[J]. Journal on Communications, 1996, 17(2): 12-16.
    KOMO J J and LIU S. Maximal length sequences for frequency hopping[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(5): 819-822. doi: 10.1109/49.56388.
    UDAYA P and SIDDIQI M U. Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1492-1503. doi: 10.1109/ 18.681324.
    ZHOU Zhengchun, TANG Xiaohu, PENG Daiyuan, et al. New constructions for optimal sets of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3831-3840. doi: 10.1109/TIT.2011.2137290.
    HAN Hongyu, PENG Daiyuan, UDAYA P, et al. Construction of low-hit-zone frequency hopping sequences with optimal partial Hamming correlation by interleaving techniques[J]. Designs, Codes and Cryptography, 2016, (online first): 1-14. doi: 10.1007/s10623-016-0274-8.
    XU Shanding, CAO Xiwang, and XU Guanghui. Recursive construction of optimal frequency-hopping sequence sets[J]. IET Communications, 2016, 10(9): 1080-1086. doi: 10.1049/ iet-com.2015.0864.
    ZHOU Zhengchun, TANG Xiaohu, NIU Xianhua, et al. New classes of frequency hopping sequences with optimal partial correlation[J]. IEEE Transactions on Information Theory, 2012, 58(1): 453-458. doi: 10.1109/TIT.2011.2167126.
    NIU Xianhua, PENG Daiyuan, and ZHOU Zhengchun. Frequency/time hopping sequence sets with optimal partial Hamming correlation properties[J]. Science China Information Sciences, 2012, 55(10): 2207-2215. doi: 10.1007/ s11432-012-4620-9.
  • 加载中
计量
  • 文章访问数:  1573
  • HTML全文浏览量:  120
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-10-19

目录

    /

    返回文章
    返回