高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位调制的非均匀DFT调制滤波器组的构造算法

周芳 水鹏朗

周芳, 水鹏朗. 基于相位调制的非均匀DFT调制滤波器组的构造算法[J]. 电子与信息学报, 2017, 39(9): 2169-2174. doi: 10.11999/JEIT170040
引用本文: 周芳, 水鹏朗. 基于相位调制的非均匀DFT调制滤波器组的构造算法[J]. 电子与信息学报, 2017, 39(9): 2169-2174. doi: 10.11999/JEIT170040
ZHOU Fang, SHUI Penglang. Construction of Nonuniform DFT Modulated Filter Banks via Phase Modulation[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2169-2174. doi: 10.11999/JEIT170040
Citation: ZHOU Fang, SHUI Penglang. Construction of Nonuniform DFT Modulated Filter Banks via Phase Modulation[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2169-2174. doi: 10.11999/JEIT170040

基于相位调制的非均匀DFT调制滤波器组的构造算法

doi: 10.11999/JEIT170040
基金项目: 

国家自然科学基金(61261032)

Construction of Nonuniform DFT Modulated Filter Banks via Phase Modulation

Funds: 

The National Natural Science Foundation of China (61261032)

  • 摘要: 由于具有灵活的频率划分能力,非均匀滤波器组在语音、图像等信号的处理中有着广泛的应用。该文针对非均匀DFT调制滤波器组无法直接合并构造的缺点,提出一种基于相位调制的构造方法。在该方法中,非均匀DFT调制滤波器组的子带滤波器由均匀DFT调制滤波器组经子带合并和相位调制获得。构造所得的非均匀滤波器组与原均匀滤波器组的重构特性近似相等。同时推导出非均匀子带滤波器具备良好频率特性的条件。理论分析和仿真结果均表明了所提的构造方法的有效性。
  • AMBEDE A, SMITHA K G, and VINOD A P. Flexible low complexity uniform and nonuniform digital filter banks with high frequency resolution for multistandard radios[J]. IEEE Transactions on Very Large Scale Integration Systems, 2015, 23(4): 631-641. doi: 10.1109/TVLSI.2014.2317811.
    AKKARAKARAN S and VAIDYANATHAN P P. Nonuniform filter banks: New results and open problems[J]. Studies in Computational Mathematics, 2003, 10: 259-301. doi: 10.1016/S1570-579X(03)80038-1.
    KUMAR A, SINGH G K, and ANURAG S. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal[J]. Journal of King Saud University- Engineering Sciences, 2015, 27(2): 158-169. doi: 10.1016/j. jksues.2013.10.001.
    李冰, 郑瑾, 葛临东. 基于非均匀滤波器组的动态信道化滤波[J]. 电子与信息学报, 2007, 29(10): 2396-2400. doi: 10.3724/ SP.J.1146.2006.00455.
    LI Bing, ZHENG Jin, and GE Lindong. Dynamic channelization based on nonuniform filterbanks[J]. Journal of Electronics Information Technology, 2007, 29(10): 2396-2400. doi: 10.3724/SP.J.1146.2006.00455.
    JAIN A and GOEL A. A multiobjective optimization method for designing M-channel NPR cosine modulated filter bank for image compression[J]. Engineering, 2015, 7(2): 93-100. doi: 10.4236/eng.2015.72008.
    JIANG J Z, SHUI P L, and ZHANG Z J. Design of oversampled DFT-modulated filter banks via modified Newtons method[J]. IET Signal Processing, 2011, 5(3): 271-280. doi: 10.1049/iet-spr.2009.0198.
    AVCI K and GUMUSSOY E. Design of exponential window based M-channel cosine modulated filter banks[C]. Signal Processing and Communication Application Conference, Hammamet, Turkey, 2016: 845-848. doi: 10.1109/SIU.2016. 7495872.
    LIANG L L, LIU H, and WANG F P. Design of shift- invariant nonuniform cosine-modulated filter bank with arbitrary integer sampling factors[J]. Digital Signal Processing, 2016, 53: 41-50. doi: 10.1016/j.dsp.2016.03.005.
    LI J L, NGUYEN T Q, and TANTARATANA S. A simple design method for near-perfect-reconstruction nonuniform filter banks[J]. IEEE Transactions on Signal Processing, 1997, 45(8): 2105-2109. doi: 10.1109/ACSSC.1994.471613.
    蒋俊正, 江庆, 欧阳缮. 一种设计近似完全重构非均匀余弦调制滤波器组的新算法[J]. 电子与信息学报, 2016, 38(9): 2385-2390. doi: 10.11999/JEIT151260.
    JIANG J Z, JIANG Q, and OUYANG S. Novel method for designing near-perfect-reconstruction nonuniform cosine modulated filter banks[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2385-2390. doi: 10.11999/JEIT151260.
    DENG Y, MATHEWS V J, and BOROUJENY B F. Low-delay nonuniform pseudo-QMF banks with application to speech enhancement[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2110-2121. doi: 10.1109/TSP. 2007.892707.
    FANG L, ZHONG W, and ZHANG Q. Design of M-channel linear-phase non-uniform filter banks with arbitrary rational sampling factors[J]. IET Signal Processing, 2016, 10(2): 106-114. doi: 10.1049/iet-spr.2015.0075.
    LING B W K, HO C Y F, TEO K L, et al. Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2517-2530. doi: 10.1109/TSP.2014.2312326.
    ALTENBACH F, LOLLMANN H W, and MATHAR R. Robust equalizer design for allpass transformed DFT filter banks with LTI property[C]. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Istanbul, Turkey, 2010: 847-851. doi: 10.1109/PIMRC.2010. 5672029.
    BREGOVIC R, DUMITRESCU B, and SARAMAKI T. An efficient method for designing low-delay nonuniform oversampled M-channel filterbanks[C]. International Symposium on Image and Signal Processing, Istanbul, Turkey, 2007: 58-62. doi: 10.1109/ISPA.2007.4383664.
    LOLLMANN H W and VARY P. Least-squares of DFT filter-banks based on allpass tranformation of higher order[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2393-2398. doi: 10.1109/TSP.2009.2039838.
    LOLLMANN H W, DARTMANN G, and VARY P. Constrained design of allpass transformed DFT filter-banks by quadratic programming[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan, 2012: 3481-3484. doi: 10.1109/ICASSP.2012. 6288666.
    SHUI P L. Image denoising using 2-D separable oversampled DFT modulated filter banks[J]. IET Image Processing, 2009, 3(3): 163-173. doi: 10.1049/iet-ipr.2007.0218.
  • 加载中
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  127
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-04-12
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回