高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稳定分布噪声稀疏性及最优匹配的跳频信号参数估计

金艳 武艳凤 姬红兵

金艳, 武艳凤, 姬红兵. 基于稳定分布噪声稀疏性及最优匹配的跳频信号参数估计[J]. 电子与信息学报, 2017, 39(10): 2413-2420. doi: 10.11999/JEIT161397
引用本文: 金艳, 武艳凤, 姬红兵. 基于稳定分布噪声稀疏性及最优匹配的跳频信号参数估计[J]. 电子与信息学报, 2017, 39(10): 2413-2420. doi: 10.11999/JEIT161397
JIN Yan, WU Yanfeng, JI Hongbing. Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2413-2420. doi: 10.11999/JEIT161397
Citation: JIN Yan, WU Yanfeng, JI Hongbing. Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2413-2420. doi: 10.11999/JEIT161397

基于稳定分布噪声稀疏性及最优匹配的跳频信号参数估计

doi: 10.11999/JEIT161397
基金项目: 

国家自然科学基金(61201286),陕西省自然科学基金(2014JM8304)和中央高校基本科研业务费专项资金(K5051202013)

Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match

Funds: 

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province (2014JM8304), The Fundamental Research Funds for the Central Universities (K5051202013)

  • 摘要: 目前基于压缩感知的跳频信号参数估计方法大多是在高斯背景噪声下进行的研究,而在非高斯稳定分布脉冲噪声环境下,已有基于高斯噪声数学模型设计的算法性能下降。针对上述问题,该文分析了稳定分布噪声的大幅值脉冲满足近似稀疏性条件,利用跳频信号与噪声之间的时域特征差异将信噪分离,实现噪声抑制。并在压缩感知框架下,建立与跳频信号特点相匹配的3参数字典,采用最优匹配(Optimal Match, OM)方法对跳频信号自适应分解,获取匹配原子,基于这些时频原子包含的信息估计跳频信号的参数。仿真验证表明,在稳定分布噪声中,与常规的跳频信号估计方法相比,该文提出的先利用噪声稀疏性去噪,再采用最优匹配提取跳频信号参数的方法(Sparsity-OM, SOM),能够较好地抑制脉冲噪声,获得准确的参数信息,具有良好的鲁棒特性。
  • ZHAO L, WANG L, and BI G. Blind frequency hopping spectrum estimation: A Bayesian approach[C]. IEEE Fourth International Conference on Big Data and Cloud Computing, IEEE, 2015: 669-675. doi: 10.1109/BDCloud.2014.137.
    吕晨杰. 基于时频分析的跳频信号检测与参数估计技术[D]. [硕士论文]. 解放军信息工程大学, 2015.
    L Chenjie. Detection and parameters estimation of frequency hopping signals based on time-frequency analysis [D]. [Master dissertation], PLA Information Engineering University, 2015.
    ZHANG H, CHEN C F, and WANG H Q. A parameter estimation method for FH signal based on SPWVD[J]. The Journal of China Universities of Posts and Telecommunications, 2011, 18: 133-136.
    CHAVALI V G and SILVA C R C M D. Detection of digital amplitude-phase modulated signals in symmetric alpha- stable noise[J]. IEEE Transactions on Communications, 2012, 60(11): 3365-3375.
    ZENG Y, LIU X, and LI O. A new method of Frequency- Hopping (FH) signal detection[J]. Journal of Electronics (China), 2011, 28(4): 468-473.
    陈立军, 张海勇, 韩东, 等. 局域波分析在跳频信号参数估计中的应用[J]. 电声技术, 2015, 39(10): 61-64. doi: 10.16311/j. audioe.2015.10.14.
    CHEN Lijun, ZHANG Haiyong, HAN Dong, et al. Application of local wave analysis in the parameter estimation of frequency-hopping signal[J]. Audio Engineering, 2015, 39(10): 61-64. doi: 10.16311/j.audioe.2015.10.14.
    郭建涛, 刘瑞杰, 陈新武. 用于跳频分量选取的修正适应度距离比粒子群算法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(1): 27-30. doi: 10.3979/j.issn.1673-825X.2015.01.005.
    GUO Jiantao, LIU Ruijie, and CHEN Xinwu. Modified fitness-distance ratio based particle swarm optimizer for selection of frequency hopping components[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(1): 27-30. doi: 10.3979/j. issn.1673-825X.2015.01.005.
    WU Z and HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society A, 2004, 460: 1597-1611.
    AN J K, TIAN B, and YI K C. Intrinsic time-scale decompositiom based algorithm for the hop rate estimation of frequency hopping signal[J]. Systems Engineering and Electronics, 2011, 33(1): 166-169.
    吕晨杰, 王斌, 王开勋. 采用图像处理的跳频信号参数盲估计[J]. 电讯技术, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001- 893x.2015.08.003.
    L Chenjie, WANG Bin, and WANG Kaixun. Blind parameter estimation of frequency hopping signals by image processing[J]. Telecommunication Engineering, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001-893x.2015.08.003.
    JIN Y and LIU J. Parameter estimation of frequency hopping signals in alpha stable noise environment[C]. IEEE, Proceedings of 11th International Conference on Signal Processing, Beijing, China, 2013: 250-253.
    DAVID W, GONZALEZ J G, and ARCE G R. Robust time- frequency representations for signals in alpha stable noise using fractional lower-order statistics[C]. IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Alberta, Canada, 1997: 415-419.
    YUE B, PENG Z, and HE Y. Impulsive noise suppression using fast myriad filter in seismic signal processing[C]. International Conference on Computational and Information Sciences, IEEE Computer Society, 2013: 1001-1004.
    BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 56(4): 118-120.
    ADCOCK B and HANSEN A C. Generalized sampling and infinite-dimensional compressed sensing[J]. Foundations of Computational Mathematics, 2015, 16(5):1263-1323.
    BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
    STANKOVIC L, STANKOVIO S, and OROVIC I. Robust time-frequency analysis based on the L-estimation and compressive sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 499-502.
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    金艳, 李曙光, 姬红兵. 基于柯西分布的跳频信号参数最大似然估计方法[J]. 电子与信息学报, 2016, 38(7): 1696-1702. doi: 10.11999/JEIT151029.
    JIN Yan, LI Shuguang, and JI Hongbing. Maximum- likelihood estimation for frequency-hopping parameters by cauchy distribution[J]. Journal of Electronics Information Technology, 2016, 38(7): 1696-1702. doi: 10.11999/ JEIT151029.
    ZHANG C M, YIN Z K, and XIAO M X. Redundant dictionary based signal over-complete representation and sparse decomposition[J]. Chinese Science Bulletin, 2006, 51(6): 628-633.
    FAN H, GUO Y, and FENG X. Blind parameter estimation of frequency hopping signals based on matching pursuit[C]. International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2008: 1-5.
    BULTAN A. A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1997, 47(3): 731-745.
    DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems and Computers, IEEE, 2008: 581-587.
    范海宁, 郭英, 艾宇. 基于原子分解的跳频信号盲检测和参数盲估计算法[J]. 信号处理, 2010, 26(5): 695-702.
    FAN Haining, GUO Ying, and AI Yu. Blind detection and parameter estimation algorithm based on atomic decomposition[J]. Signal Processing, 2010, 26(5): 695-702.
    金艳, 朱敏, 姬红兵. Alpha 稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计[J]. 电子与信息学报, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
    JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  133
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-29
  • 修回日期:  2017-06-14
  • 刊出日期:  2017-10-19

目录

    /

    返回文章
    返回