ZHAO L, WANG L, and BI G. Blind frequency hopping spectrum estimation: A Bayesian approach[C]. IEEE Fourth International Conference on Big Data and Cloud Computing, IEEE, 2015: 669-675. doi: 10.1109/BDCloud.2014.137.
|
吕晨杰. 基于时频分析的跳频信号检测与参数估计技术[D]. [硕士论文]. 解放军信息工程大学, 2015.
|
L Chenjie. Detection and parameters estimation of frequency hopping signals based on time-frequency analysis [D]. [Master dissertation], PLA Information Engineering University, 2015.
|
ZHANG H, CHEN C F, and WANG H Q. A parameter estimation method for FH signal based on SPWVD[J]. The Journal of China Universities of Posts and Telecommunications, 2011, 18: 133-136.
|
CHAVALI V G and SILVA C R C M D. Detection of digital amplitude-phase modulated signals in symmetric alpha- stable noise[J]. IEEE Transactions on Communications, 2012, 60(11): 3365-3375.
|
ZENG Y, LIU X, and LI O. A new method of Frequency- Hopping (FH) signal detection[J]. Journal of Electronics (China), 2011, 28(4): 468-473.
|
陈立军, 张海勇, 韩东, 等. 局域波分析在跳频信号参数估计中的应用[J]. 电声技术, 2015, 39(10): 61-64. doi: 10.16311/j. audioe.2015.10.14.
|
CHEN Lijun, ZHANG Haiyong, HAN Dong, et al. Application of local wave analysis in the parameter estimation of frequency-hopping signal[J]. Audio Engineering, 2015, 39(10): 61-64. doi: 10.16311/j.audioe.2015.10.14.
|
郭建涛, 刘瑞杰, 陈新武. 用于跳频分量选取的修正适应度距离比粒子群算法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(1): 27-30. doi: 10.3979/j.issn.1673-825X.2015.01.005.
|
GUO Jiantao, LIU Ruijie, and CHEN Xinwu. Modified fitness-distance ratio based particle swarm optimizer for selection of frequency hopping components[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(1): 27-30. doi: 10.3979/j. issn.1673-825X.2015.01.005.
|
WU Z and HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society A, 2004, 460: 1597-1611.
|
AN J K, TIAN B, and YI K C. Intrinsic time-scale decompositiom based algorithm for the hop rate estimation of frequency hopping signal[J]. Systems Engineering and Electronics, 2011, 33(1): 166-169.
|
吕晨杰, 王斌, 王开勋. 采用图像处理的跳频信号参数盲估计[J]. 电讯技术, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001- 893x.2015.08.003.
|
L Chenjie, WANG Bin, and WANG Kaixun. Blind parameter estimation of frequency hopping signals by image processing[J]. Telecommunication Engineering, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001-893x.2015.08.003.
|
JIN Y and LIU J. Parameter estimation of frequency hopping signals in alpha stable noise environment[C]. IEEE, Proceedings of 11th International Conference on Signal Processing, Beijing, China, 2013: 250-253.
|
DAVID W, GONZALEZ J G, and ARCE G R. Robust time- frequency representations for signals in alpha stable noise using fractional lower-order statistics[C]. IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Alberta, Canada, 1997: 415-419.
|
YUE B, PENG Z, and HE Y. Impulsive noise suppression using fast myriad filter in seismic signal processing[C]. International Conference on Computational and Information Sciences, IEEE Computer Society, 2013: 1001-1004.
|
BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 56(4): 118-120.
|
ADCOCK B and HANSEN A C. Generalized sampling and infinite-dimensional compressed sensing[J]. Foundations of Computational Mathematics, 2015, 16(5):1263-1323.
|
BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
|
STANKOVIC L, STANKOVIO S, and OROVIC I. Robust time-frequency analysis based on the L-estimation and compressive sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 499-502.
|
CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
|
金艳, 李曙光, 姬红兵. 基于柯西分布的跳频信号参数最大似然估计方法[J]. 电子与信息学报, 2016, 38(7): 1696-1702. doi: 10.11999/JEIT151029.
|
JIN Yan, LI Shuguang, and JI Hongbing. Maximum- likelihood estimation for frequency-hopping parameters by cauchy distribution[J]. Journal of Electronics Information Technology, 2016, 38(7): 1696-1702. doi: 10.11999/ JEIT151029.
|
ZHANG C M, YIN Z K, and XIAO M X. Redundant dictionary based signal over-complete representation and sparse decomposition[J]. Chinese Science Bulletin, 2006, 51(6): 628-633.
|
FAN H, GUO Y, and FENG X. Blind parameter estimation of frequency hopping signals based on matching pursuit[C]. International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2008: 1-5.
|
BULTAN A. A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1997, 47(3): 731-745.
|
DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems and Computers, IEEE, 2008: 581-587.
|
范海宁, 郭英, 艾宇. 基于原子分解的跳频信号盲检测和参数盲估计算法[J]. 信号处理, 2010, 26(5): 695-702.
|
FAN Haining, GUO Ying, and AI Yu. Blind detection and parameter estimation algorithm based on atomic decomposition[J]. Signal Processing, 2010, 26(5): 695-702.
|
金艳, 朱敏, 姬红兵. Alpha 稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计[J]. 电子与信息学报, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
|
JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
|