高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式压缩感知的遥感图像融合算法

刘静 李小超 祝开建 黄开宇

刘静, 李小超, 祝开建, 黄开宇. 基于分布式压缩感知的遥感图像融合算法[J]. 电子与信息学报, 2017, 39(10): 2374-2381. doi: 10.11999/JEIT161393
引用本文: 刘静, 李小超, 祝开建, 黄开宇. 基于分布式压缩感知的遥感图像融合算法[J]. 电子与信息学报, 2017, 39(10): 2374-2381. doi: 10.11999/JEIT161393
LIU Jing, LI Xiaochao, ZHU Kaijian, HUANG Kaiyu. Distributed Compressed Sensing Based Remote Sensing Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2374-2381. doi: 10.11999/JEIT161393
Citation: LIU Jing, LI Xiaochao, ZHU Kaijian, HUANG Kaiyu. Distributed Compressed Sensing Based Remote Sensing Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2374-2381. doi: 10.11999/JEIT161393

基于分布式压缩感知的遥感图像融合算法

doi: 10.11999/JEIT161393
基金项目: 

CAST 创新基金(J20141110),国家自然科学基金(61573276),国家 973 计划项目(2013CB329405)

Distributed Compressed Sensing Based Remote Sensing Image Fusion Algorithm

Funds: 

The Innovation Foundation of CAST (J20141110), The National Natural Science Foundation of China (61573276), The National 973 Program of China (2013CB329405)

  • 摘要: 针对基于压缩感知(Compressed Sensing, CS)理论的传统遥感图像融合算法未能考虑源图像信息相关性的特点,该文提出一种基于分布式压缩感知(Distributed Compressed Sensing, DCS)的遥感图像融合改进算法。通过DCS的第1联合稀疏模型(Joint Sparsity Model-1, JSM-1)提取源图像低频信息的公共部分和独有部分,再利用独有特征添加(UFA)的融合规则进行融合,从而提高融合精度。选取QuickBird卫星实测图像数据对该文方法和多个传统融合方法进行仿真实验并进行评价指标的对比,结果表明该文方法融合性能相对传统遥感图像融合方法都有不同程度的提高。
  • 张晓, 薛月菊, 涂淑琴, 等. 基于结构组稀疏表示的遥感图像融合[J]. 中国图象图形学报, 2016, 21(8): 1106-1118. doi: 10.11834/jig.20160815.
    ZHANG Xiao, XUE Yueju, TU Shuqin, et al. Remote sensing image fusion based on structural group sparse representation [J]. Journal of Image and Graphics, 2016, 21(8): 1106-1118. doi: 10.11834/jig.20160815.
    RAHMANI S, STRAIT M, MERKURJEV D, et al. An adaptive IHS pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 746-750. doi: 10.1109/LGRS.2010.2046715.
    OTAZU X, GONZALEZ-AUDICANA M, FORS O, et al. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(10): 2376-2385. doi: 10.1109/TGRS.2005.856106.
    AIAZZI B, ALPARONE L, BARONTI S, et al. MTF- tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering Remote Sensing, 2006, 72(5): 591-596. doi: 10.14358/PERS.72.5.591.
    金益如, 杨学志, 董张玉, 等. 一种NSST与稀疏表示相结合的遥感图像融合算法[J]. 地理与地理信息科学, 2016, 32(2): 60-66. doi: 10.3969/j.issn.1672-0504.2016.02.012.
    JIN Yiru, YANG Xuezhi, DONG Zhangyu, et al. A new algorithm for remote sensing image fusion based on NSST and sparse representation[J]. Geography and Geo- Information Science, 2016, 32(2): 60-66. doi: 10.3969/j.issn. 1672-0504.2016.02.012.
    ZHU Fuzhen, HE Hongchang, WANG Xiaofei, et al. A new multi-spectral image fusion algorithm based on compressive sensing[C]. The Fifth International Conference on Instrumentation Measurement, Computer, Communication and Control, Qinhuangdao, 2015: 1904-1908. doi: 10.1109/IMCCC.2015.404.
    VICINANZA M R, RESTAINO R, VIVONE G, et al. A pansharpening method based on the sparse representation of injected details[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 180-184. doi: 10.1109/LGRS.2014. 2331291.
    DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, 2005: 1537-1541. doi: 10.1109/ACSSC.2005.1600024.
    黄立勤, 陈财淦. 全景图拼接中图像融合算法的研究[J]. 电子与信息学报, 2014, 36(6): 1292-1298. doi: 10.3724/SP.J.1146. 2013.01220.
    HUANG Liqin and CHEN Caigan. Study on image fusion algorithm of panoramic image stitching[J]. Journal of Electronics Information Technology, 2014, 36(6): 1292-1298. doi: 10.3724/SP.J.1146.2013.01220.
    YIN Haitao and LI Shutao. Multimodal image fusion with joint sparsity model[J]. Optical Engineering, 2011, 50(6): 409-421. doi: 10.1117/1.3584840.
    张颖超, 茅丹, 胡凯. 压缩传感理论在心电图信号恢复问题上的研究[J]. 计算机研究与发展, 2014, 51(5): 1018-1027. doi: 10.7554/issn1000-1239.2014.20121161.
    ZHANG Yingchao, MAO Dan, and HU Kai. ECG signal recovery problem based on compressed sensing theory[J]. Journal of Computer Research and Development, 2014, 51(5): 1018-1027. doi: 10.7554/issn1000-1239.2014.20121161.
    CANDES E and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979.
    LI Shutao and YANG Bin. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 738-746. doi: 10.1109/TGRS.2010.2067219.
    VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565-2586. doi: 10.1109/TGRS.2014.2361734.
    RANCHIN T and WALD L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation[J]. Photogrammetric Engineering Remote Sensing, 2000, 66: 49-61.
  • 加载中
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  204
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-10-19

目录

    /

    返回文章
    返回