EBRAHIM A and ARASH R. New regular radix-8 scheme for elliptic curve scalar multiplication without pre-computation [J]. IEEE Transactions on Computaters, 2008, 64(2): 438-451. doi: 10.1109/TC.2013.213.
|
KHAN A and BENAISSA M. High-speed and low-latency ECC processor implementation over on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(1): 165-176. doi: 10.1109/TVLSI.2016. 2574620.
|
YANG Xiaohui, DAI Zibin, ZHANG Jun, et al. ASIP for elliptic curve cryptography based on VLIW architecture[J]. China Communications, 2010, 7(4): 161-165.
|
LIAO Kai, CUI Xiaoxin, LIAO Nan, et al. High-performance noninvasive side-channel attack resistant ECC coprocessor for [J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 727-738. doi: 10.1109/TIE.2016.2610402.
|
LAI J and HUANG C. Energy-adaptive dual-field processor for high-performance elliptic curve cryptographic application [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(8): 1512-1517. doi: 10.1109/TVLSI.2010. 2048134.
|
AZARDERAKHSH R and REYHANI A. High-performance implementation of point multiplication on koblitz curves[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2013, 60(1): 41-45. doi: 10.1109/TCSII.2012.2234916.
|
LIU Zhe, SEO H, GROBSCHADL J, et al. Efficient implementation of NIST-Compliant elliptic curve cryptography for 8-bit AVR-Based sensor nodes[J]. IEEE Transaction on Information Forensics and Security, 2016, 11(7): 1385-1397. doi: 10.1007/978-3-319-02726-5_22.
|
AZARDERAKHSH R, JARVINEN K U, MOZAFFARI- KERMANI M, et al. Efficient algorithm and architecture for elliptic curve cryptography for extremely constrained secure applications[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2014, 61(4): 1144-1155. doi: 10.1109/TCSI. 2013.2283691.
|
杨晓辉, 戴紫彬, 李淼, 等. 面向椭圆曲线密码的处理器并行体系结构研究与设计[J]. 通信学报, 2011, 32(5): 70-77. doi: 10.3969/j.issn.1000-436X.2011.05.010.
|
YANG Xiaohui, DAI Zibin, LI Miao, et al. Research and design of parallel architecture processor for elliptic curve cryptography[J]. Journal on Communications, 2011, 32(5): 70-77. doi: 10.3969/j.issn.1000-436X.2011.05.010.
|
AZARDERAKHSH R and REYHANI-MASOLEH A. Parallel and high-speed computations of elliptic curve cryptography using hybrid-double multipliers[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(6): 1668-1677. doi: 10.1109/TPDS.2014.2323062.
|
MARZOUQI H, MAHMOUD A, SALAH K, et al. A high- speed FPGA implementation of an RSD-Based ECC processor[J]. IEEE Transactions on Very Large Scale Integration (VLSI) System, 2016, 24(1): 151-164. doi: 10. 1109/TVLSI.2015.2391274.
|
冯晓, 戴紫彬, 李伟, 等. 基于 Amdahl 定律的多核密码处理器性能模型研究[J]. 电子与信息学报, 2016, 38(4): 827-833. doi: 10.11999/JEIT150474.
|
FENG Xiao, DAI Zibin, LI Wei, et al. Performance model of multicore crypto processor based on amdahls law[J]. Journal of Electronics Information Technology, 2016, 38(4): 827-833. doi: 10.11999/JEIT150474.
|
WONG C and CHANG H. High-efficiency processing schedule for parallel turbo decoders using QPP interleaver[J]. IEEE Transactions on Circuits and System, 2011, 58(6): 1412-1420. doi: 10.1109/TCSI.2010.2097690.
|
KALISKI B. The Montgomery inverse and its applications[J]. IEEE Transactions on Computers, 1995, 44(8): 1064-1065. doi: 10.1109/12.403725.
|
LIU Bin and BAAS B M. Parallel AES encryption engines for many-core processor arrays[J]. IEEE Transactions on Computers, 2013, 62(3): 536-547. doi: 10.1109/TC.2011.251.
|
FURBASS F and WOLKERSTORFER J. ECC processor with low die size for RFID applications[C]. IEEE International Symposium on Circuits and Systems, New Orleans, 2007: 1835-1838. doi: 10.1109/ISCAS.2007.378271.
|
HONG Jinhua and WU Weichung. The design of high performance elliptic curve cryptographic[C]. IEEE International Symposium on Circuits and Systems, Cancun, 2009: 527-530. doi: 10.1109/MWSCAS.2009.5236038.
|
LEE J, CHUNG S, CHANG H, et al. A 3.40 ms/ and 2.77 ms/ DF-ECC processor with side-channel attack resistance[C]. 2013 IEEE International Solid-State Circuits Conference, California, 2013: 50-52. doi: 10.1109/ ISSCC.2013.6487632.
|