高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆曲线密码处理器的高效并行处理架构研究与设计

戴紫彬 易肃汶 李伟 南龙梅

戴紫彬, 易肃汶, 李伟, 南龙梅. 椭圆曲线密码处理器的高效并行处理架构研究与设计[J]. 电子与信息学报, 2017, 39(10): 2487-2494. doi: 10.11999/JEIT161380
引用本文: 戴紫彬, 易肃汶, 李伟, 南龙梅. 椭圆曲线密码处理器的高效并行处理架构研究与设计[J]. 电子与信息学报, 2017, 39(10): 2487-2494. doi: 10.11999/JEIT161380
DAI Zibin, YI Suwen, LI Wei, NAN Longmei. Research and Design of Efficient Parallel Processing Architecture for Elliptic Curve Cryptographic Processor[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2487-2494. doi: 10.11999/JEIT161380
Citation: DAI Zibin, YI Suwen, LI Wei, NAN Longmei. Research and Design of Efficient Parallel Processing Architecture for Elliptic Curve Cryptographic Processor[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2487-2494. doi: 10.11999/JEIT161380

椭圆曲线密码处理器的高效并行处理架构研究与设计

doi: 10.11999/JEIT161380
基金项目: 

国家自然科学基金(61404175)

Research and Design of Efficient Parallel Processing Architecture for Elliptic Curve Cryptographic Processor

Funds: 

The National Natural Science Foundation of China (61404175)

  • 摘要: 为了解决当前椭圆曲线密码处理器普遍存在灵活性低、资源占用大的问题,该文采用统计建模的方式,以面积-时间(AT)综合性能指标为指导,提出了一种面向椭圆曲线密码并行处理架构的量化评估方式,并确定3路异构并行处理架构可使处理器综合性能达到最优。其次,该文提出一个分离分级式存储结构和一个运算资源高度复用的模运算单元,可增强存储器的访问效率和运算资源的利用率。在90 nm CMOS工艺下综合,该文处理器的面积为1.62mm2,完成一次GF(2571)和GF(p521)上的点乘运算分别需要2.26 ms/612.4J和2.63 ms/665.4J。与同类设计相比,该文处理器不仅具有较高的灵活性、可伸缩性,而且其芯片面积和运算速度达到了很好的折中。
  • EBRAHIM A and ARASH R. New regular radix-8 scheme for elliptic curve scalar multiplication without pre-computation [J]. IEEE Transactions on Computaters, 2008, 64(2): 438-451. doi: 10.1109/TC.2013.213.
    KHAN A and BENAISSA M. High-speed and low-latency ECC processor implementation over on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(1): 165-176. doi: 10.1109/TVLSI.2016. 2574620.
    YANG Xiaohui, DAI Zibin, ZHANG Jun, et al. ASIP for elliptic curve cryptography based on VLIW architecture[J]. China Communications, 2010, 7(4): 161-165.
    LIAO Kai, CUI Xiaoxin, LIAO Nan, et al. High-performance noninvasive side-channel attack resistant ECC coprocessor for [J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 727-738. doi: 10.1109/TIE.2016.2610402.
    LAI J and HUANG C. Energy-adaptive dual-field processor for high-performance elliptic curve cryptographic application [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(8): 1512-1517. doi: 10.1109/TVLSI.2010. 2048134.
    AZARDERAKHSH R and REYHANI A. High-performance implementation of point multiplication on koblitz curves[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2013, 60(1): 41-45. doi: 10.1109/TCSII.2012.2234916.
    LIU Zhe, SEO H, GROBSCHADL J, et al. Efficient implementation of NIST-Compliant elliptic curve cryptography for 8-bit AVR-Based sensor nodes[J]. IEEE Transaction on Information Forensics and Security, 2016, 11(7): 1385-1397. doi: 10.1007/978-3-319-02726-5_22.
    AZARDERAKHSH R, JARVINEN K U, MOZAFFARI- KERMANI M, et al. Efficient algorithm and architecture for elliptic curve cryptography for extremely constrained secure applications[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2014, 61(4): 1144-1155. doi: 10.1109/TCSI. 2013.2283691.
    杨晓辉, 戴紫彬, 李淼, 等. 面向椭圆曲线密码的处理器并行体系结构研究与设计[J]. 通信学报, 2011, 32(5): 70-77. doi: 10.3969/j.issn.1000-436X.2011.05.010.
    YANG Xiaohui, DAI Zibin, LI Miao, et al. Research and design of parallel architecture processor for elliptic curve cryptography[J]. Journal on Communications, 2011, 32(5): 70-77. doi: 10.3969/j.issn.1000-436X.2011.05.010.
    AZARDERAKHSH R and REYHANI-MASOLEH A. Parallel and high-speed computations of elliptic curve cryptography using hybrid-double multipliers[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(6): 1668-1677. doi: 10.1109/TPDS.2014.2323062.
    MARZOUQI H, MAHMOUD A, SALAH K, et al. A high- speed FPGA implementation of an RSD-Based ECC processor[J]. IEEE Transactions on Very Large Scale Integration (VLSI) System, 2016, 24(1): 151-164. doi: 10. 1109/TVLSI.2015.2391274.
    冯晓, 戴紫彬, 李伟, 等. 基于 Amdahl 定律的多核密码处理器性能模型研究[J]. 电子与信息学报, 2016, 38(4): 827-833. doi: 10.11999/JEIT150474.
    FENG Xiao, DAI Zibin, LI Wei, et al. Performance model of multicore crypto processor based on amdahls law[J]. Journal of Electronics Information Technology, 2016, 38(4): 827-833. doi: 10.11999/JEIT150474.
    WONG C and CHANG H. High-efficiency processing schedule for parallel turbo decoders using QPP interleaver[J]. IEEE Transactions on Circuits and System, 2011, 58(6): 1412-1420. doi: 10.1109/TCSI.2010.2097690.
    KALISKI B. The Montgomery inverse and its applications[J]. IEEE Transactions on Computers, 1995, 44(8): 1064-1065. doi: 10.1109/12.403725.
    LIU Bin and BAAS B M. Parallel AES encryption engines for many-core processor arrays[J]. IEEE Transactions on Computers, 2013, 62(3): 536-547. doi: 10.1109/TC.2011.251.
    FURBASS F and WOLKERSTORFER J. ECC processor with low die size for RFID applications[C]. IEEE International Symposium on Circuits and Systems, New Orleans, 2007: 1835-1838. doi: 10.1109/ISCAS.2007.378271.
    HONG Jinhua and WU Weichung. The design of high performance elliptic curve cryptographic[C]. IEEE International Symposium on Circuits and Systems, Cancun, 2009: 527-530. doi: 10.1109/MWSCAS.2009.5236038.
    LEE J, CHUNG S, CHANG H, et al. A 3.40 ms/ and 2.77 ms/ DF-ECC processor with side-channel attack resistance[C]. 2013 IEEE International Solid-State Circuits Conference, California, 2013: 50-52. doi: 10.1109/ ISSCC.2013.6487632.
  • 加载中
计量
  • 文章访问数:  1319
  • HTML全文浏览量:  129
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-10-19

目录

    /

    返回文章
    返回