高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合权重合并策略的社交网络用户关注点识别方法

姬建睿 刘业政 姜元春

姬建睿, 刘业政, 姜元春. 基于混合权重合并策略的社交网络用户关注点识别方法[J]. 电子与信息学报, 2017, 39(9): 2056-2062. doi: 10.11999/JEIT161348
引用本文: 姬建睿, 刘业政, 姜元春. 基于混合权重合并策略的社交网络用户关注点识别方法[J]. 电子与信息学报, 2017, 39(9): 2056-2062. doi: 10.11999/JEIT161348
JI Jianrui, LIU Yezheng, JIANG Yuanchun. Recognizing Users Focuses on Social Network Based on Mixed-weight Combined Strategy[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2056-2062. doi: 10.11999/JEIT161348
Citation: JI Jianrui, LIU Yezheng, JIANG Yuanchun. Recognizing Users Focuses on Social Network Based on Mixed-weight Combined Strategy[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2056-2062. doi: 10.11999/JEIT161348

基于混合权重合并策略的社交网络用户关注点识别方法

doi: 10.11999/JEIT161348
基金项目: 

国家自然科学基金(71490725, 71521001, 71371062, 91546114, 71501057),国家973规划项目(2013CB329603),国家科技支撑计划项目(2015BAH26F00),教育部人文社会科学研究青年基金(15YJC630111)

Recognizing Users Focuses on Social Network Based on Mixed-weight Combined Strategy

Funds: 

The National Natural Science Foundation of China (71490725, 71521001, 71371062, 91546114, 71501057), The National 973 Program of China (2013CB329603), The National Key Technology Support Program (2015BAH26F00), MOE Project of Humanities and Social Sciences (15YJC630111)

  • 摘要: 主题模型是用于识别博客、网络社区、微博等社交网络平台上用户关注点的重要手段。考虑到社交网络平台上短文本主题识别的特殊性,该文根据短文本内容在上下文上的相关性,提出一种基于混合权重合并策略的AW-LDA模型。该模型将符合上下文相关条件的短文本进行虚拟合并,并根据上下文相关程度对不同短文本赋予不同的权重,构建了一种新的短文本主题识别方法。通过网络BBS社区与微博社区两组数据的实验,该模型能够有效识别不同话题下社交网络用户关注点,为解决短文本主题识别问题提供了新的解决思路。
  • YAN Zehua and LI Fang. News thread extraction based on topical n-gram model with a background distribution[C]. International Conference on Neural Information Processing, Berlin, 2011: 416-424. doi: 10.1007/978-3-642-24958-7_49.
    XING Chen, WANG Yuan, LIU Jie, et al. Hash tag-based sub- event discovery using mutually generative LDA in Twitter[C]. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, 2016: 2666-2672.
    ZHANG Xiaoming, CHEN Xiaoming, CHEN Yan, et al. Event detection and popularity prediction in microblogging [J]. Neurocomputing, 2015, 149(3): 1469-1480. doi: 10.1016/ j.neucom.2014.08.045.
    BLEI D, NG A, and JORDAN M. Latent dirichlet allocation [J]. Journal of Machine Learning Research, 2003, (3): 993-1022.
    WENG Jianshu, LIM E, JIANG Jing, et al. Twitterrank: Finding topic-sensitive influential twitterers[C]. Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York, 2010: 261-270. doi: 10.1145/ 1718487.1718520.
    PHAN X, NGUYEN L, and HORIGUCHI S. Learning to classify short and sparse text web with hidden topics from large-scale data collections[C]. Proceedings of the 17th International Conference on World Wide Web, Beijing, 2008: 91-100. doi: 10.1145/1367497.1367510.
    ZHANG Heng and ZHONG Guoqiang. Improving short text classification by learning vector representations of both words and hidden topics[J]. Knowledge-Based Systems, 2016, 102(12): 76-86. doi: 10.1016/j.knosys.2016.03.027.
    VO D and OCK C. Learning to classify short text from scientific documents using topic models with various types of knowledge[J]. Expert Systems with Applications, 2015, 42(3): 1684-1698. doi: 10.1016/j.eswa.2014.09.031.
    JIN O, LIU N, ZHAO Kai, et al. Transferring topical knowledge from auxiliary long texts for short text clustering [C]. Proceedings of the 20th ACM International Conference on Information and Knowledge Management, New York, 2011: 775-784. doi: 10.1145/2063576.2063689.
    CHENG Xueqi, YAN Xiaohui, LAN Yanyan, et al. Btm: Topic modeling over short texts[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2928-2941. doi: 10.1109/TKDE.2014.2313872.
    ZUO Yuan, WU Junjie, ZHANG Hui, et al. Topic modeling of short texts: A pseudo-document view[C]. Proceedings of the 22nd ACM international Conference on Knowledge Discovery and Data Mining, San Francisco, 2016: 2105-2114. doi: 10.1145/2939672.2939880.
    LIN Hao, SUN Bo, WU Junjie, et al. Topic detection from short text: A term-based consensus clustering method[C]. Proceedings of the 13th International Conference on Service Systems and Service Management, Kunming, 2016: 1-6. doi: 10.1109/ICSSSM.2016.7538624.
    ZHAO Waynexin, JIANG Jing, WENG Jianshu, et al. Comparing twitter and traditional media using topic models[C]. Proceedings of the 33rd European Conference on Information Retrieval, Dublin, 2011: 338-349. doi: 10.1007/ 978-3-642-20161-5_34.
    MIMNO D, WALLACH H, TALLEY E, et al. Optimizing semantic coherence in topic models[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, 2011: 262-272.
  • 加载中
计量
  • 文章访问数:  1257
  • HTML全文浏览量:  162
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-09
  • 修回日期:  2017-05-12
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回