高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于细化频谱的频率迭代插值估计算法

崔维嘉 鲁航 巴斌

崔维嘉, 鲁航, 巴斌. 基于细化频谱的频率迭代插值估计算法[J]. 电子与信息学报, 2017, 39(9): 2141-2147. doi: 10.11999/JEIT161312
引用本文: 崔维嘉, 鲁航, 巴斌. 基于细化频谱的频率迭代插值估计算法[J]. 电子与信息学报, 2017, 39(9): 2141-2147. doi: 10.11999/JEIT161312
CUI Weijia, LU Hang, BA Bin. Iterative Frequency Estimation Algorithm Based on Interpolated Zoom Spectrum[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2141-2147. doi: 10.11999/JEIT161312
Citation: CUI Weijia, LU Hang, BA Bin. Iterative Frequency Estimation Algorithm Based on Interpolated Zoom Spectrum[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2141-2147. doi: 10.11999/JEIT161312

基于细化频谱的频率迭代插值估计算法

doi: 10.11999/JEIT161312
基金项目: 

国家自然科学基金(61401513)

Iterative Frequency Estimation Algorithm Based on Interpolated Zoom Spectrum

Funds: 

The National Natural Science Foundation of China (61401513)

  • 摘要: 在加性高斯白噪声环境的单频复指数信号频率估计中,针对现有频率估计算法估计误差分布不均且估计精度较低的问题,该文提出一种细化频谱迭代插值估计算法。该算法首先根据半长信号的快速傅里叶变换峰值位置计算细化频谱,再利用细化频谱幅值进行频率的无偏插值估计,最后利用估计结果和全长信号更新细化频谱并进行迭代插值重估。仿真结果表明,与现有算法相比,所提算法估计误差分布均匀,且在高信噪比的所有频率范围和低信噪比的大部分频率范围内估计精度更高。同时仿真表明,所提算法在加性均匀噪声环境中也有较好的估计性能。
  • SHEN Yanlin, TU Yaqing, CHEN Linjun, et al. A phase match based frequency estimation method for sinusoidal signals[J]. Review of Scientific Instruments, 2015, 86(4): 721-726. doi: 10.1063/1.4916365.
    DJUKANOVIC S. An accurate method for frequency estimation of a real sinusoid[J]. IEEE Signal Processing Letters, 2016, 23(7): 915-918. doi: 10.1109/LSP.2016. 2564102.
    SYED A A, SUN Q, and FOROOSH H. Frequency estimation of sinusoids from nonuniform samples[J]. Signal Processing, 2016, 129: 67-81. doi: 10.1016/j.sigpro.2016.05. 024.
    LUO Jiufei, XIE Zhijiang, and XIE Ming. Frequency estimation of the weighted real tones or resolved multiple tones by iterative interpolation DFT algorithm[J]. Digital Signal Processing, 2015, 41(6): 118-129. doi: 10.1016/j.dsp. 2015.03.002.
    黄翔东, 王越冬, 靳旭康, 等. 无窗全相位FFT/FFT相位差频移补偿频率估计器[J]. 电子与信息学报, 2016, 38(5): 1135-1142. doi: 10.11999/JEIT151041.
    HUANG Xiangdong, WANG Yuedong, JIN Xukang, et al. No-windowed apFFT/FFT phase difference frequency estimator based on frequency-shift compensation[J]. Journal of Electronics Information Technology, 2016, 38(5): 1135-1142. doi: 10.11999/JEIT151041.
    RIFE D C and VINCENT G A. Use of the discrete fourier transform in the measurement of frequencies and levels of tones[J]. Bell Labs Technical Journal, 1970, 49(2): 197-228. doi: 10.1002/j.1538-7305.1970.tb01766.x.
    邓振淼, 刘渝, 王志忠. 正弦波频率估计的修正Rife算法[J]. 数据采集与处理, 2006, 21(4): 473-477. doi: 10.3969/j.issn. 1004-9037.2006.04.020.
    DENG Zhenmiao, LIU Yu, and WANG Zhizhong. Modified Rife algorithm for frequency estimation of sinusoid wave[J]. Journal of Data Acquisition and Processing, 2006, 21(4): 473-477. doi: 10.3969/j.issn.1004-9037.2006.04.020.
    胥嘉佳, 刘渝, 邓振淼, 等. 正弦波信号频率估计快速高精度递推算法的研究[J]. 电子与信息学报, 2009, 31(4): 865-869. doi: 10.3724/SP.J.1146.2008.00075.
    XU Jiajia, LIU Yu, DENG Zhenmiao, et al. A research of fast and accurate recursive algorithm for frequency estimation of sinusoid signal[J]. Journal of Electronics Information Technology, 2009, 31(4): 865-869. doi: 10.3724/SP.J.1146. 2008.00075.
    QUINN B G. Estimation of frequency, amplitude, and phase from the DFT of a time series[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 814-817. doi: 10.1109/78. 558515.
    MACLEOD M D. Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones[J]. IEEE Transactions on Signal Processing, 1998, 46(1): 141-148. doi: 10.1109/78.651200.
    MAO X H and TING H. Estimation of complex single-tone parameters in the DFT domain[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3879-3883. doi: 10.1109/TSP. 2010.2046693.
    CANDAN C. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6): 351-354. doi: 10.1109/LSP. 2011.2136378.
    CANDAN C. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9): 913-916. doi: 10.1109/LSP.2013.2273616.
    JAN-RAY L and SHYING L. Analytical solutions for frequency estimators by interpolation of DFT coefficients[J]. Signal Processing, 2014, 100: 93-100. doi: 10.1016/j.sigpro. 2014.01.012.
    LIANG X, LIU A, PAN X, et al. A new and accurate estimator with analytical expression for frequency estimation [J]. IEEE Communications Letters, 2016, 20(1): 105-108. doi: 10.1109/LCOMM.2015.2496149.
    刘进明, 应怀樵. FFT谱连续细化分析的富里叶变换法[J]. 振动工程学报, 1995, 8(2): 162-166.
    LIU Jinming and YING Huaiqiao. Zoom FFT spectrum by Fourier transform[J]. Journal of Vibration Engineering, 1995, 8(2): 162-166.
    齐国清, 贾欣乐. 插值FFT估计正弦信号频率的精度分析[J]. 电子学报, 2004, 32(4): 625-629. doi: 10.3321/j.issn:0372- 2112.2004.04.022.
    QI Guoqing and JIA Xinle. Accuracy analysis of frequency estimation of sinusoid based on interpolated FFT[J]. Acta Electronica Sinica, 2004, 32(4): 625-629. doi: 10.3321/j.issn: 0372-2112.2004.04.022.
    黄翔东, 孟天伟, 丁道贤, 等. 前后向子分段相位差频率估计法[J]. 物理学报, 2014, 63(21): 202-208. doi: 10.7498/aps.63. 214304.
    HUANG Xiangdong, MENG Tianwei, DING Daoxian, et al. A novel phase difference frequency estimator based on forward and backward sub-segmenting[J]. Acta Physica Sinica, 2014, 63(21): 202-208. doi: 10.7498/aps.63.214304.
    曹燕. 含噪实信号频率估计算法研究[D]. 华南理工大学, 2012.
  • 加载中
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  248
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 修回日期:  2017-03-23
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回