高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于收视行为的互联网电视节目流行度预测模型

朱琛刚 程光

朱琛刚, 程光. 基于收视行为的互联网电视节目流行度预测模型[J]. 电子与信息学报, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
引用本文: 朱琛刚, 程光. 基于收视行为的互联网电视节目流行度预测模型[J]. 电子与信息学报, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
Citation: ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310

基于收视行为的互联网电视节目流行度预测模型

doi: 10.11999/JEIT161310
基金项目: 

国家计划项目(863)(2015AA015603),江苏省未来网络创新研究院未来网络前瞻性研究项目(BY2013095-5-03),江苏省六大人才高峰高层次人才项目(2011-DZ024)

Program Popularity Prediction Model of Internet TV Based on Viewing Behavior

Funds: 

The National 863 Program of China (2015AA 015603), The Prospective Research Program on Future Networks of Jiangsu Province (BY2013095-5-03), The Six Industries Talent Peaks Plan of Jiangsu Province (2011-DZ024)

  • 摘要: 准确预测节目流行度是互联网电视节目系统设计与优化所要解决的关键问题之一。针对现有预测方法存在模型训练时间长、样本数量多、且对突发热点节目流行度预测效果差等问题,该文测量了某互联网电视平台280万用户的60亿条收视行为数据,采用行为动力学分类方法将节目流行度演化过程分为内源临界、内源亚临界、外源临界和外源亚临界4种类型,运用双种群粒子优化的最小二乘支持向量机对每种类型分别构建了一种互联网电视节目流行度预测模型BD3P,并将BD3P模型应用于实际数据测验。实验结果表明,与现有其他方法相比,BD3P模型预测精度可提升17%以上,并能有效缩短预测周期。
  • 朱轶, 糜正琨, 王文鼐. 一种基于内容流行度的内容中心网络缓存概率置换策略[J]. 电子与信息学报, 2013, 35(6): 1305-1310. doi: 10.3724/SP.J.1146.2012.01143.
    ZHU Yi, MI Zhengkun, and WANG Wennai. A cache probability replacement policy based on content popularity in content centric networks[J]. Journal of Electronics Information Technology, 2013, 35(6): 1305-1310. doi: 10.3724 /SP.J.1146.2012.01143.
    芮兰兰, 彭昊, 黄豪球, 等. 基于内容流行度和节点中心度匹配的信息中心网络缓存策略[J]. 电子与信息学报, 2016, 38(2): 325-331. doi: 10.11999/JEIT150626.
    RUI Lanlan, PENG Hao, HUANG Haoqiu, et al. Popularity and centrality based selective caching scheme for information- centric networks[J]. Journal of Electronics Information Technology, 2016, 38(2): 325-331. doi: 10.11999/JEIT150626.
    GMEZ V, KALTENBRUNNER A, and LPEZ V. Statistical analysis of the social network and discussion threads in slashdot[C]. ACM International Conference on World Wide Web, Beijing, China, 2008: 645-654. doi: 10.1145 /1367497.1367585.
    SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi: 10.1145/1787234.1787254.
    CASTILLO C, ELHADDAD M, PFEFFER J, et al. Characterizing the life cycle of online news stories using social media reactions[C]. ACM International Conference on Computer Supported Cooperative Work Social Computing, Baltimore, MD, USA, 2014: 211-223. doi: 10.1145/2531602. 2531623.
    PINTO H, ALMEIDA J M, and GONALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. ACM International Conference on Web Search and Data Mining, Rome, Italy, 2013: 365-374. doi: 10.1145/ 2433396.2433443.
    GAO S, MA J, and CHEN Z. Modeling and predicting retweeting dynamics on microblogging platforms[C]. ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 107-116. doi: 10.1145/2684822. 2685303.
    CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
    WU B, MEI T, CHENG W H, et al. Unfolding temporal dynamics: Predicting social media popularity using multi-scale temporal decomposition[C]. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 2016: 32-38. doi: 10.13140/RG.2.2.27504.66565.
    WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[C]. IEEE International Symposium on Quality of Service, Portland, OR, USA, 2015: 141-146. doi: 10.1109/IWQoS.2015.7404724.
    FONTANINI G, BERTINI M, and DEL BIMBO A. Web video popularity prediction using sentiment and content visual features[C]. ACM International Conference on Multimedia Retrieval, New York, NY, USA, 2016: 289-292. doi: 10.1145/2911996.2912053.
    ZAMAN T, FOX E B, and BRADLOW E T. A Bayesian approach for predicting the popularity of tweets[J]. The Annals of Applied Statistics, 2014, 8(3): 1583-1611. doi: 10.1214/14-AOAS741.
    WANG J, ZHANG Z, and ZHANG W. Support vector machine based on double-population particle swarm optimization[J]. Journal of Convergence Information Technology, 2013, 8(8): 33-43. doi: 10.4156/jcit.vol8.issue8. 106.
  • 加载中
计量
  • 文章访问数:  1423
  • HTML全文浏览量:  165
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-10-19

目录

    /

    返回文章
    返回