高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合显著深度特征的RGB-D图像显著目标检测

吴建国 邵婷 刘政怡*

吴建国, 邵婷, 刘政怡*. 融合显著深度特征的RGB-D图像显著目标检测[J]. 电子与信息学报, 2017, 39(9): 2148-2154. doi: 10.11999/JEIT161304
引用本文: 吴建国, 邵婷, 刘政怡*. 融合显著深度特征的RGB-D图像显著目标检测[J]. 电子与信息学报, 2017, 39(9): 2148-2154. doi: 10.11999/JEIT161304
WU Jianguo, SHAO Ting, LIU Zhengyi. RGB-D Saliency Detection Based on Integration Feature of Color and Depth Saliency Map[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2148-2154. doi: 10.11999/JEIT161304
Citation: WU Jianguo, SHAO Ting, LIU Zhengyi. RGB-D Saliency Detection Based on Integration Feature of Color and Depth Saliency Map[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2148-2154. doi: 10.11999/JEIT161304

融合显著深度特征的RGB-D图像显著目标检测

doi: 10.11999/JEIT161304
基金项目: 

国家科技支撑计划(2015BAK24B00),高等学校博士学科点专项科研基金(20133401110009),安徽高校省级自然科学研究项目(KJ2015A009),安徽大学信息保障技术协同创新中心开放课题

RGB-D Saliency Detection Based on Integration Feature of Color and Depth Saliency Map

Funds: 

The National Key Technology RD Program (2015BAK24B00), The Specialized Research Fund for the Doctoral Program of Higher Education of China (20133401110009), Key Program of Natural Science Project of Educational Commission of Anhui Province (KJ2015A009), Open Funds of Co-Innovation Center for Information Supply Assurance Technology of Anhui University

  • 摘要: 深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合特征,根据构图先验和背景先验的方法进行显著目标检测。首先,对原始深度图进行预处理:使用背景顶点区域、构图交点和紧密度处理深度图,多角度融合形成深度显著图,并作为显著深度特征,结合颜色特征形成综合特征;其次,从前景角度,将综合特征通过边连接权重构造关联矩阵,根据构图先验,假设多层中心矩形为前景种子,通过流形排序方法计算出RGB-D图像的前景显著图;从背景角度,根据背景先验以及边界连通性计算出背景显著图;最后,将前景显著图和背景显著图进行融合并优化得到最终显著图。实验采用RGB-D1000数据集进行显著性检测,并与4种不同的方法进行对比,所提方法的显著性检测结果更接近人工标定结果,PR(查准率-查全率)曲线显示在相同召回率下准确率高于其他方法。
  • DING Y, XIAO J, and YU J. Importance filtering for image retargeting[C]. IEEE Conference on Computer Vision Pattern Recognition. Colorado Springs, CO, USA, 2011: 89-96. doi: 10.1109/CVPR.2011.5995445.
    SIAGIAN C and ITTI L. Rapid biologically-inspired scene classification using features shared with visual attention[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2007, 29(2): 300-312. doi: 10.1109/TPAMI.2007. 40.
    MAHADEVAN V and VASCONCELOS N. Saliency-based discriminant tracking[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, FL, USA, 2009: 1007-1013. doi: 10.1109/CVPR.2009. 5206573.
    ROTHER C, KOLMOGOROV V, and BLAKE A. GrabCut: Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314. doi: 10.1109/CGIV.2013.34.
    LIN W Y, WU P C, and CHEN B R. Image retargeting using depth enhanced saliency[J]. Proceedings of 3DSA, 2013, 7:1.
    FENG D, BARNES N, YOU S, et al. Local background enclosure for RGB-D salient object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 2343-2350. doi: 10. 1109/CVPR.2016.257.
    CHENG Y, FU H, WEI X, et al. Depth enhanced saliency detection method[J]. European Journal of Histochemistry, 2014, 55(1): 301-308. doi: 10.1145/2632856.2632866.
    REN J, GONG X, YU L, et al. Exploiting global priors for RGB-D saliency detection[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, MA, USA, 2015: 25-32. doi: 10.1109/ CVPRW.2015.7301391.
    黄子超, 刘政怡. 特征融合与S-D概率矫正的RGB-D显著检测[J]. 中国图象图形学报, 2016, 21(10): 1392-1401.
    HUANG Zichao and LIU Zhengyi. Feature integration and S-D probability correction based RGB-D saliency detection[J]. Journal of Image and Graphics, 2016, 21(10): 1392-1401.
    GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context- aware saliency detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 34(10): 1915-1926. doi: 10.1109/TPAMI.2011.272.
    王娇娇, 刘政怡. 多尺度构图先验的显著目标检测[J]. 中国图象图形学报, 2015, 20(12): 1664-1673.
    WANG Jiaojiao and LIU Zhengyi. Multi-scale saliency detection based on composition prior[J]. Journal of Image and Graphics, 2015, 20(12): 1664-1673.
    ZHOU L, YANG Z, YUAN Q, et al. Salient region detection via integrating diffusion-based compactness and local contrast[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3308-3320. doi: 10.1109/TIP.2015.2438546.
    TANG Shuai, WANG Xiaoyu, LU Xutao, et al. Histogram of oriented normal vectors for object recognition with a depth sensor[C]. Asian Conference on Computer Vision 2012. Daejeon, Korea, 2012: 525-538. doi: 10.1007/978-3-642 -37444-9_41.
    XUE H, GU Y, LI Y, et al. RGB-D saliency detection via mutual guided manifold ranking[C]. IEEE International Conference on Image Processing. Quebec City, QC, Canada, 2015: 666-670. doi: 10.1109/ICIP.2015.7350882.
    YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014: 2814-2821. doi: 10.1109/CVPR. 2014.360.
    QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015: 110-119. doi: 10.1109/CVPR.2015.7298606.
    JIANG B, ZHANG L, LU H, et al. Saliency detection via absorbing Markov chain[C]. Proceedings of the IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013: 1665-1672. doi: 10.1109/ICCV.2013.209.
    PENG H, LI B, XIONG W, et al. RGBD salient object detection: A benchmark and algorithms[C]. European Conference on Computer Vision. Zurich, Switzerland, 2014: 92-109. doi: 10.1007/978-3-319-10578-9_7.
    JU R, GE L, GENG W, et al. Depth saliency based on anisotropic center-surround difference[C]. 2014 IEEE International Conference on Image Processing. Paris, France, 2014: 1115-1119. doi: 10.1109/ICIP.2014.7025222.
    WEI Y, WEN F, ZHU W, et al. Geodesic saliency using background priors[C]. European Conference on Computer Vision. Florence, Italy, 2012: 29-42. doi: 10.1007/978-3-642- 33712-3_3.
  • 加载中
计量
  • 文章访问数:  1539
  • HTML全文浏览量:  207
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 修回日期:  2017-05-22
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回