高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于带汇点Laplace扩散模型的显著目标检测

王宝艳 张铁 王新刚

王宝艳, 张铁, 王新刚. 基于带汇点Laplace扩散模型的显著目标检测[J]. 电子与信息学报, 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296
引用本文: 王宝艳, 张铁, 王新刚. 基于带汇点Laplace扩散模型的显著目标检测[J]. 电子与信息学报, 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296
WANG Baoyan, ZHANG Tie, WANG Xingang. Salient Object Detection Based on Laplace Diffusion Models with Sink Points[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296
Citation: WANG Baoyan, ZHANG Tie, WANG Xingang. Salient Object Detection Based on Laplace Diffusion Models with Sink Points[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296

基于带汇点Laplace扩散模型的显著目标检测

doi: 10.11999/JEIT161296
基金项目: 

国家自然科学基金(51475086),辽宁省自然科学基金(2014020026)

Salient Object Detection Based on Laplace Diffusion Models with Sink Points

Funds: 

The National Natural Science Foundation of China (51475086), The Natural Science Foundation of Liaoning Province (2014020026)

  • 摘要: 该文基于Laplace相似度量的构造方法,针对两阶段显著目标检测中显著种子的不同类型(稀疏或稠密),提出了相应的显著性扩散模型,从而实现了基于扩散的两阶段互补的显著目标检测。尤其是第2阶段扩散模型中汇点的融入,一方面更好地抑制了显著性图中的背景,同时对于控制因子的取值更加稳健。实验结果表明,当显著种子确定时,不同的扩散模型会导致显著性扩散程度的差异。基于带汇点Laplace的两阶段互补的扩散模型较其他扩散模型更有效、更稳健。同时,从多项评价指标分析,该算法与目前流行的5种显著目标检测算法相比,具有较大优势。这表明此种用于图像检索或分类的Laplace相似度量的构造方法在显著目标检测中也是适用的。
  • SHEN Hao, LI Shuxiao, ZHU Chengfei, et al. Moving object detection in aerial video based on spatiotemporal saliency[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1211-1217. doi: 10.1016/j.cja.2013.07.038.
    WANG Tiantian, XIU Chunbo, and CHENG Yi. Vehicle recognition based on saliency detection and color histogram [C]. 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015: 2532-2535. doi: 10.1109/CCDC.2015.7162347.
    GUO Chenlei and ZHANG Liming. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1): 185-198. doi: 10.1109/TIP. 2009.2030969.
    ITTI L. Automatic foveation for video compression using a neurobiological model of visual attention[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1304-1318. doi: 10.1109/TIP.2004.834657.
    QIN Chanchan, ZHANG Guoping, ZHOU Yicong, et al. Integration of the saliency-based seed extraction and random walks for image segmentation[J]. Neurocomputing, 2014, 129(4): 378-391. doi: 10.1016/j.neucom.2013.09.021.
    LI Ang, SHE Xiaochun, and SUN Qizhi. Color image quality assessment combining saliency and FSIM[C]. Fifth International Conference on Digital Image Processing, Beijing, China, 2013: 88780I-1-88780I-5. doi: 10.1117/12. 2030719.
    LI Liang, JIANG Shuqiang, ZHA Zhengjun, et al. Partial- duplicate image retrieval via saliency-guided visual matching [J]. IEEE Multimedia, 2013, 20(3): 13-23. doi: 10.1109/ MMUL.2013.15.
    NA I S, LE H, KIM S H, et al. Extraction of salient objects based on image clustering and saliency[J]. Pattern Analysis and Application, 2015, 18(3): 667-675. doi: 10.1007/s10044- 015-0459-1.
    HAN Jie, GUO Baolong, and SUN Wei. Target tracking method in aerial video based on saliency fusion[C]. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shanghai, China, 2015: 723-727. doi: 10.2991/meic-15.2015.165.
    BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706-5722. doi: 10.1007/ 978-3-642-33709-3_30.
    WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]. 12th European Conference on Computer Vision, Florence, Italy, 2012: 29-42. doi: 10.1007/978-3-642-33712-3_3.
    FU Keren, GU I Y H, GONG Chen, et al. Robust manifold- preserving diffusion-based saliency detection by adaptive weight construction[J]. Neurocomputing, 2015, 175: 336-347. doi: 10.1016/j.neucom.2015.10.066.
    SHEN Xiaohui and WU Ying. A unified approach to salient object detection via low rank matrix recovery[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 853-860. doi: 10.1109/CVPR.2012. 6247758.
    LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. IEEE Conference on Computer Vision, Sydney, Australia, 2013: 2976-2983. doi: 10.1109/ICCV.2013.370.
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Oregon, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013. 407.
    JIANG Bowen, ZHANG Lihe, LU Huchuan, et al. Saliency detection via absorbing markov chain[C]. IEEE Conference on Computer Vision, Oregon, USA, 2013: 1665-1672. doi: 10.1109/ICCV.2013.209.
    ZHOU Li, YANG Zhaohui, YUAN Qing, et al. Salient region detection via integrating diffusion-based compactness and local contrast[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3308-3320. doi: 10.1109/TIP.2015.2438546.
    HWANG I, LEE S H, PARK J S, et al. Saliency detection based on seed propagation in a multi-layer graph[J]. Multimedia Tools Applications, 2017, 76(2): 2111-2129. doi: 10.1007 /s11042-015-3171-7.
    GOPALAKRISHNAN V, HU Yiqun, and RAJAN D. Random walks on graphs to model saliency in images[C]. IEEE Conference on Computer Vision, Miami, USA, 2009: 1698-1705. doi: 10.1109/CVPR.2009.5206767.
    FU Keren, GU I Y H, and YANG Jie. Learning full-range affinity for diffusion-based saliency detection[C]. 41st IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1926-1930.
    GONG Chen, TAO Dacheng, LIU Wei, et al. Saliency propagation from simple to difficult[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2531-2539. doi: 10.1109/CVPR.2015.7298868.
    WU Xiaoming, LI Zhenguo, and CHANG Shihfu. New insights into Laplacian similarity search[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1949-1957. doi: 10.1109/CVPR.2015. 7298805.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI. 2012.120.
    OTSU N. A threshold selection method from gray level histograms[J]. IEEE Transactions on System, Man, and Cybernetic, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979. 4310076.
    CHEN Shuhan, ZHENG Ling, HU Xuelong, et al. Discriminative saliency propagation with sink points[J]. Pattern Recognition, 2016, 60: 2-12. doi: 10.1016/j.patcog. 2016.05.016.
    BIRJI A. What is a salient object a dataset and a baseline model for salient object detection[J]. IEEE Transactions on Image Processing, 2015, 24(2): 742-756. doi: 10.1109/TIP. 2014.2383320.
    ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2009: 1597-1604. doi: 10.1109/CVPR.2009.5206596.
  • 加载中
计量
  • 文章访问数:  1177
  • HTML全文浏览量:  96
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-04-25
  • 刊出日期:  2017-08-19

目录

    /

    返回文章
    返回