高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Beyond-BP译码算法综述:原理与应用

吕毅博 胡伟 王琳

吕毅博, 胡伟, 王琳. Beyond-BP译码算法综述:原理与应用[J]. 电子与信息学报, 2017, 39(6): 1503-1514. doi: 10.11999/JEIT161288
引用本文: 吕毅博, 胡伟, 王琳. Beyond-BP译码算法综述:原理与应用[J]. 电子与信息学报, 2017, 39(6): 1503-1514. doi: 10.11999/JEIT161288
Lü Yibo, HU Wei, WANG Lin. Survey of Beyond-BP Decoding Algorithms: Theory and Applications[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1503-1514. doi: 10.11999/JEIT161288
Citation: Lü Yibo, HU Wei, WANG Lin. Survey of Beyond-BP Decoding Algorithms: Theory and Applications[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1503-1514. doi: 10.11999/JEIT161288

Beyond-BP译码算法综述:原理与应用

doi: 10.11999/JEIT161288
基金项目: 

国家自然科学基金(61271241, 61671395)

Survey of Beyond-BP Decoding Algorithms: Theory and Applications

Funds: 

The National Natural Science Foundation of China (61271241, 61671395)

  • 摘要: 低密度奇偶校验码因其具有逼近香农限的优异性能,现已在多种标准和系统中得到广泛的应用。但为了使其能够满足不同应用场景下通信系统对纠错性能、计算复杂性、译码时延、硬件资源损耗以及功耗等方面的要求,需要对用于LDPC码译码的置信传播算法进行进一步的研究与改进。该文从译码算法的改进动机、方法论、计算复杂度以及性能表现等角度入手,对近些年出现的一些Beyond-BP译码算法进行了综述。并在最后对用于迭代接收系统的译码算法改进工作进行了讨论,为未来算法的改进工作提供一点思路。
  • GALLAGER R G. Low density parity check codes[J]. IEEE Transactions on Information Theory, 1962, 8(1): 21-28. doi: 10.1109/TIT.1962.1057683.
    MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18): 1645-1646. doi: 10.1049/el:19961141.
    DVB Organization. ETSI EN 302 307 V1. 2. 1. Digital Video Broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2)[S]. 2009.
    IEEE P802.11 Task Group ad. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications[S]. 2010.
    CCSDS. CCSDS 230.2-G-1-next generation uplink[R]. Washington, DC, USA, 2014.
    FOSSORIER M, MIHALJEVIC M, and IMAI H. Reduced complexity iterative decoding of low density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5): 673-680. doi: 10.1109/26. 768759.
    TANNER R M. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533-547. doi: 10.1109/TIT.1981.1056404.
    DAVEY M and MACKAY D. Low density parity check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6): 165-167. doi: 10.1109/4234.681360.
    WYMEERSCH H, STEENDAM H, and MOENECLAEY M. Log-domain decoding of LDPC codes over GF(q)[C]. IEEE International Conference on Communications, Paris, France, 2004: 772-776.
    WANG C, CHEN X, LI Z, et al. A simplified min-sum decoding algorithm for non-binary LDPC codes[J]. IEEE Transactions on Communications, 2013, 61(1): 24-32. doi: 10.1109/TCOMM.2012.101712.110709.
    杨威, 张为. 一种基于分层译码和Min-max的多进制LDPC码译码算法[J]. 电子与信息学报, 2013, 35(7): 1677-1681. doi: 10.3724/SP.J.1146.2012.01634.
    YANG W and ZHANG W. A decoding algorithm based on layered decoding and min-max for non binary LDPC codes[J]. Journal of Electronics Information Technology, 2013, 35(7), 1677-1681. doi: 10.3724/SP.J.1146.2012.01634.
    LI E, DECLERCQ D, and GUNNAM K. Trellis-based extended min-sum algorithm for non-binary LDPC codes and its hardware structure[J]. IEEE Transactions on Communications, 2013, 61(7): 2600-2611. doi: 10.1109/ TCOMM.2013.050813.120489.
    ZHAO D, MA X, CHEN C, et al. A low complexity decoding algorithm for majority-logic decodable nonbinary LDPC codes[J]. IEEE Communications Letters, 2010, 14(11): 1062-1064. doi: 10.1109/LCOMM.2010.100810.101403.
    CHEN C, HUANG Q, and CHAO C. Two low-complexity reliability based message-passing algorithms for decoding non-binary LDPC codes[J]. IEEE Transactions on Communications, 2010, 58(11): 3140-3147. doi: 10.1109/ TCOMM.2010.091310.090327.
    HUANG Q, ZHANG M, WANG Z, et al. Bit-reliability based low-complexity decoding algorithms for non-binary LDPC codes[J]. IEEE Transactions on Communications, 2014, 62(12): 4230-4240. doi: 10.1109/TCOMM.2014.2370032.
    LIU X, LIANG C, ZHANG Y, et al. Decoding of non-binary low-density parity-check codes based on the genetic algorithm and applications over mobile fading channels [J]. IET Communications, 2015, 9(16): 1941-1948. doi: 10. 1049/iet-com.2015.0085.
    WAINWRIGHT M, JAAKKOLA T, and WILLSKY A. A new class of upper bounds on the log partition function [J]. IEEE Transactions on Information Theory, 2005, 51(7) : 2313-2335. doi: 10.1109/TIT.2005.850091.
    WYMEERSCH H, PENNA F, and SAVIC V. Uniformly reweighted belief propagation for estimation and detection in wireless networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1587-1595. doi: 10.1109/TWC. 2012.021412.111509.
    LIU J and DE LAMARER C. Low-latency reweighted belief propagation decoding for LDPC codes[J]. IEEE Communications Letters, 2012, 16(10): 1660-1663. doi: 10. 1109/LCOMM.2012.080312.121307.
    WYMEERSCH H, PENNA F, SAVIC V, et al. Comparison of reweighted message passing algorithms for LDPC decoding [C]. IEEE International Conference on Communications, Budapest, Hungary, 2013: 3264-3269.
    DIVSALAR D, DOLINAR S, JONES C R, et al. Capacity approaching protograph codes[J]. IEEE Journal on Select Areas in Communications, 2009, 27(6): 876-888. doi: 10.1109 /JSAC.2009.090806.
    HU X Y, ELEFTHERIOU E, and ARNOLD D M. Regular and irregular progressive edge-growth tanner graphs [J]. IEEE Transactions on Information Theory, 2005, 51(1): 386-398. doi: 10.1109/TIT.2004.839541.
    RYAN W E and LIN S. Channel Codes: Classical and Modern[M]. Cambridge University Press, 2009.
    VASIC B, CHILAPPAGARI S K, NGUYEN D V, et al. Trapping set ontology[C]. 47th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2009: 1-7.
    HAN Y and RYAN W E. Low-floor decoders for LDPC codes[J]. IEEE Transactions on Communications, 2009, 57(6): 1663-1673. doi: 10.1109/TCOMM.2009.06.070325.
    HAN Y and RYAN W E. Low-floor detection/decoding of LDPC-coded partial response channels[J]. IEEE Journal on Select Areas in Communications, 2010, 28(2): 252-260. doi: 10.1109/JSAC.2010.100214.
    VARNICA N, FOSSORIER M P, and KAVCIC A. Augmented belief propagation decoding of low-density parity-check codes[J]. IEEE Transactions on Communications, 2007, 55(7): 1308-1317. doi: 10.1109/ TCOMM.2007.900611.
    KANG J, ZHANG L, DING Z, et al. A two-stage iterative decoding of LDPC codes for lowering error floors[C]. IEEE Global Telecommunication Conference, New Orleans, USA, 2008: 1-4.
    吕毅博. 多元差分混沌通信系统数字迭代接收关键技术研究[D]. [Ph.D. dissertation], 厦门大学, 2016: 30-37.
    MAO Y Y and BANIHASHEMI A H. Decoding low-density parity-checkcodes with probabilistic scheduling[J]. IEEE Communications Letters, 2001, 5(10): 414-416. doi: 10.1109 /4234.957379.
    CASADO A V, GRIOT M, and WESEL R. Informed dynamic scheduling for belief-propagation decoding of LDPC codes[C]. IEEE International Conference on Communications, Glasgow, UK, 2007: 932-937.
    HOCEVAR D. A reduced complexity decoder architecture via layered decoding of LDPC codes[C]. IEEE Workshop on Signal Processing Systems, Austin, USA, 2004: 107-112.
    CASADO A, GRIOT M, and WESEL R. LDPC decoders with informed dynamic scheduling[J]. IEEE Transactions on Communications, 2010, 58(12): 3470-3479. doi: 10.1109/ TCOMM.2010.101910.070303.
    LEE H C, UENG Y L, YEH S M, et al. Two informed dynamic scheduling strategies for iterative LDPC decoders[J]. IEEE Transactions on Communications, 2013: 61(3): 886-896. doi: 10.1109/TCOMM.2013.012313.120172.
    LIU X, ZHANG Y, and CUI R. Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19(2): 147-150. doi: 10.1109/LCOMM.2014.2385096.
    LIU X, ZHOU Z, CUI R, et al. Informed decoding algorithms of LDPC codes based on dynamic selection strategy[J]. IEEE Transactions on Communications, 2016, 64(4): 1357-1366. doi: 10.1109/TCOMM.2016.2527642.
    IEEE C802.16e-05/0066r3.LDPC Coding for OFDMA PHY [S]. 2005.
    KIM J H, NAM M Y, and SONG H Y. Variable-to-check residual belief propagation for LDPC codes[J]. Electronics Letters, 2009, 45(2): 117-118. doi: 10.1049/el:20092505.
    马卓, 杜栓义, 王新梅. 基于量化的LDPC译码算法的高效实现[J]. 电子与信息学报, 2011, 33(9): 2273-2277. doi: 10.3724/ SP.J.1146.2011.00041.
    MA Z, DU S Y, and WANG X M. Efficient Implementing of LDPC decoding algorithm based on quantization[J]. Journal of Electronics Information Technology, 2011, 33(9): 2273-2277. doi: 10.3724/ SP.J.1146.2011.00041.
    JIAN Y Y and PFISTER H D. Convergence of weighted Min-Sum decoding via dynamic programming on trees[J]. IEEE Transactions on Information Theory, 2014, 60(2): 943-963. doi: 10.1109/TIT.2013.2290303.
    姜明, 王晨. 基于原型图的低码率LDPC码最小和译码算法改进方案[J]. 电子与信息学报, 2010, 32(11): 2781-2784. doi: 10.3724/SP.J.1146.2009.01652.
    JIANG M and WANG C. An improvement on the Min-sum algorithm for low-rate protograph LDPC codes[J]. Journal of Electronics Information Technology, 2010, 32(11): 2781-2784. doi: 10.3724/SP.J.1146.2009.01652.
    KONG L, JIANG Y, HAN G, et al. Improved Min-Sum decoding for 2-D intersymbol interference Channels[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. doi: 10.1109/ TMAG.2014.2317749.
    JIANG M, ZHAO C, SHI Z, et al. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes[J]. IEEE Communications Letters, 2005, 9(9): 814-816. doi: 10.1109/LCOMM.2005.1506712.
    张高远, 周亮, 文红. LDPC码加权比特翻转译码算法研究[J].电子与信息学报, 2014, 36(9): 2093-2097. doi: 10.3724/SP.J. 1146.2013.01622.
    ZHANG G, ZHOU L, and WEN H. Research on weighted bit-flipping decoding algorithm for LDPC codes[J]. Journal of Electronics Information Technology, 2014, 36(9): 2093-2097. doi: 10.3724/SP.J.1146.2013.01622.
    FENG G and HANZO L. Reliability ratio based weightedbit- flipping decoding for low-density parity-check codes[J]. Electronics Letters, 2004, 40(21): 1356-1358. doi: 10.1049/ el:20046400.
    CHANG T C and SU Y T. Dynamic weighted bit-flipping decoding algorithms for LDPC codes[J]. IEEE Transactions on Communications, 2015, 63(11): 3950-3963. doi: 10.1109/ TCOMM.2015.2469780.
    张高远, 周亮, 苏伟伟, 等. 基于平均幅度的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2013, 35(11): 2572-2578. doi: 10.3724/SP.J.1146.2012.01728.
    ZHANG G Y, ZHOU L, SU W W, et al. Average magnitude based weighted bit-flipping decoding algorithm for LDPC codes[J]. Journal of Electronics Information Technology, 2013, 35(11): 2572-2578. doi: 10.3724/SP.J.1146.2012.01728.
    张高远, 周亮, 文红. 基于幅度和的LDPC码加权比特翻转译码算法[J]. 系统工程与电子技术, 2014, 36(4): 752-757. doi: 10.3969/j.issn.1001-506X.2014.04.24.
    ZHANG G Y, ZHOU L, and WEN H. Sum of the magnitude based weighted bit-flipping decoding algorithm for LDPC codes[J]. Systems Engineering and Electronics, 2014, 36(4): 752-757. doi: 10.3969/j.issn.1001-506X.2014.04.24.
    陶雄飞, 王跃东, 柳盼. 基于变量节点更新的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2016, 38(3): 688-693. doi: 10.11999/JEIT150720.
    TAO X F, WANG Y D, and LIU P. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics Information Technology, 2016, 38(3): 688-693. doi: 10.11999/JEIT150720.
    ZHAO J, ZARKESHVARI F, and BANIHASHEMI A H. On implementation of min-sum algorithm and its modifications for decoding low-density parity-check codes[J]. IEEE Transactions on Communications, 2005, 53(4): 549-554. doi: 10.1109/TCOMM.2004.836563.
    ZHANG Z, DOLECEK L, NIKOLIC B, et al. Design of LDPC decoders for improved low error rate performance: Quantization and algorithm choices[J]. IEEE Transactions on Communications, 2009, 57(11): 3258-3268. doi: 10.1109/ TCOMM.2009.11.080105.
    PLANJERY S K, DECLERCQ D, DANJEAN L, et al. Finite alphabet iterative decoderspart I: Decoding beyond belief propagation on the binary symmetric channel[J]. IEEE Transactions on Communications, 2013, 61(10): 4033-4045. doi: 10.1109/TCOMM.2013.090513.120443.
    DECLERCQ D, VASIC B, PLANJERY S K, et al. Finite alphabet iterative decoderspart II: Towards guaranteed error correction of LDPC codes via iterative decoder diversity [J]. IEEE Transactions on Communications, 2013, 61(10): 4046-4057. doi: 10.1109/ TCOMM.2013.090513.120444.
    CAI F, ZHANG X, DECLERCQ D, et al. Finite alphabet iterative decoders for LDPC codes: Optimization, architecture and analysis[J]. IEEE Transactions on Circuits Systems I: Regular Papers, 2014, 61(5): 1366-1375. doi: 10.1109/TCSI. 2014.2309896.
    TRAN N H, NGUYEN H H, and LE-NGOC T. Performance analysis and design criteria of BICM-ID with signal space diversity for keyhole Nakagami-m fading channels[J]. IEEE Transactions on Information Theory, 2009, 55(4): 1592-1602. doi: 10.1109/TIT.2009.2013001.
    AHMED S. Soft metrics and EXIT chart analysis of non-coherent MFSK with diversity reception in Rician fading channel[J]. IEEE Transactions on Wireless Communications, 2011, 10(6): 1692-1696. doi: 10.1109/TWC.2011.032411. 100499.
    CHOI J and HA J. Iterative demodulation and decoding of uplink multiuser m-ary FSK using OFDMA mapping[J]. IEEE Communications Letters, 2013, 17(9): 1842-1845. doi: 10.1109/LCOMM.2013.070913.131359.
    UCHOA A G D, HEALY C, and DELAMARE R C. Iterative detection and decoding algorithms for MIMO systems in block-fading channels using LDPC codes[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2735-2741. doi: 10.1109/TVT.2015.2432099.
    LYU Y, WANG L, CAI G, et al. Iterative receiver for m-ary DCSK systems[J]. IEEE Transactions on Communications, 2015, 63(11): 3929-3936. doi: 10.1109/TCOMM.2015. 2425877.
    LYU Y, WANG L, and XIONG Z. Performance advantage of joint source-channel decoder over iterative receiver under m-ary differential chaotic shift keying systems[C]. IEEE Vehicular Technology Conference 2016 Spring, Nanjing, China, 2016: 1-5.
  • 加载中
计量
  • 文章访问数:  1799
  • HTML全文浏览量:  182
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回