高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂噪声下基于同步压缩Chirplet变换的LFM信号参数估计

金艳 高舵 姬红兵

金艳, 高舵, 姬红兵. 复杂噪声下基于同步压缩Chirplet变换的LFM信号参数估计[J]. 电子与信息学报, 2017, 39(8): 1906-1912. doi: 10.11999/JEIT161222
引用本文: 金艳, 高舵, 姬红兵. 复杂噪声下基于同步压缩Chirplet变换的LFM信号参数估计[J]. 电子与信息学报, 2017, 39(8): 1906-1912. doi: 10.11999/JEIT161222
JIN Yan, GAO Duo, JI Hongbing. Parameter Estimation of LFM Signals Based on Synchrosqueezing Chirplet Transform in Complicated Noise[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1906-1912. doi: 10.11999/JEIT161222
Citation: JIN Yan, GAO Duo, JI Hongbing. Parameter Estimation of LFM Signals Based on Synchrosqueezing Chirplet Transform in Complicated Noise[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1906-1912. doi: 10.11999/JEIT161222

复杂噪声下基于同步压缩Chirplet变换的LFM信号参数估计

doi: 10.11999/JEIT161222
基金项目: 

国家自然科学基金(61201286),陕西省自然科学基金(2014JM8304)

Parameter Estimation of LFM Signals Based on Synchrosqueezing Chirplet Transform in Complicated Noise

Funds: 

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province (2014JM8304)

  • 摘要: 同步压缩变换建立在小波变换的基础上,通过在较小频域范围内压缩小波系数,可有效改善信号的能量分布,提高时频聚集性。该文针对线性调频(LFM)信号的参数估计问题,根据适用于LFM信号的Chirplet变换,在同步压缩理论的框架下,提出一种同步压缩Chirplet变换方法(SSCT)。由于充分利用了LFM信号时间与频率的线性关系,SSCT方法在提高Chirplet变换时频平面能量聚集性的同时,可实现信号参数的精确估计,且保留了Chirplet变换窗函数选取灵活,无交叉项干扰等优点。针对复杂噪声环境下的参数估计问题,进一步提出分数低阶SSCT方法(FLOSSCT)。仿真结果表明,在高斯噪声以及脉冲性更强的稳定分布噪声背景下,该方法可有效实现LFM信号的参数提取,具有较好的鲁棒性。
  • 金艳, 胡碧昕, 姬红兵. 稳定分布噪声下一种稳健加权滤波的统一框架[J]. 系统工程与电子技术, 2016, 38(10): 2221-2227. doi: 10.3969/j.issn.1001-506X.2016.10.01.
    JIN Yan, HU Bixin, and JI Hongbing. Unified framework of robust weighted filtering in stable noise[J]. Systems Engineering and Electronics, 2016, 38(10): 2221-2227. doi: 10.3969/j.issn.1001-506X.2016.10.01.
    WANG Dianwei, WANG Jing, LIU Ying, et al. An adaptive time-frequency filtering algorithm for multi-component LFM signals based on generalized S-transform[C]. 2015 21st International Conference on Automation and Computing, Glasgow, United Kingdom, 2015: 1-6.
    DURAK L and ARIKAN O. Short-time Fourier transform: Two fundamental properties and an optimal implementation [J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1231-1242. doi: 10.1109/TSP.2003.810293.
    PEI Soochang and HUANG Shihgu. STFT with adaptive window width based on the chirp rate[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4065-4080. doi: 10.1109/ TSP.2012.2197204.
    AUGER F and FLADRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089. doi: 10.1109/78.382394.
    DAUBECHIES I, LU J, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decompositionlike tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. doi: 10.1016/j.acha.2010. 08.002.
    刘景良, 任伟新, 王佐才, 等. 基于同步挤压小波变换的结构瞬时频率识别[J]. 振动与冲击, 2013, 32(18): 37-42. doi: 10.13465/j. cnki.jvs.2013.18.010.
    LIU Jingliang, REN Weixin, WANG Zuocai, et al. Instantaneous frequency identification based on synchrosqueezing wavelet transformation[J]. Journal of Vibration and Shock, 2013, 32(18): 37-42. doi: 10.13465/j. cnki.jvs.2013.18.010.
    HUANG Zhonglai, ZHANG Jianzhong, ZHAO Tiehu, et al. Synchrosqueezing S transform and its application in seismic spectral decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 817-825. doi: 10.13465/j. cnki.jvs.2013.18.010.
    MANN S and HAYKIN S. The chirplet transform: Physical considerations[J]. IEEE Transactions on Signal Processing, 1995, 43(11): 2745-2761. doi: 10.1109/78.482123.
    MIKIO Aoi, KYLE Lepage, YOONSOEB Lim, et al. An approach to time-frequency analysis with ridges of the continuous Chirplet transform[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 699-710. doi: 10.1109/ TSP. 2014.2365756.
    邱剑锋, 谢娟, 汪继文, 等. Chirplet变换及其推广[J]. 合肥工业大学学报, 2007, 30(12): 1575-1579.
    QIU Jianfeng, XIE Juan, WANG Jiwen, et al. Chirplet transform and its extension[J]. Journal of Hefei University of Technology, 2007, 30(12): 1575-1579.
    王超, 任伟新, 黄天立. 基于复小波变换的结构瞬时频率识别[J]. 振动工程学报, 2009, 22(5): 492-496.
    WANG Chao, REN Weixin, and HUANG Tianli. Instantaneous frequency identification of a structure based on complex wavelet transform[J]. Journal of Vibration Engineering, 2009, 22(5): 492-496.
    HOU ZK, HERA A, LIU W, et al. Identification of instantaneous modal parameters of time-varying systems using wavelet approach[C]. The 4th International Workshop on Structural Health Monitoring, Stanford, 2003.
    杨芳, 高静怀. Chirplet 变换中的参数选择研究[J]. 西安交通大学学报, 2007, 40(6): 719-723.
    YANG Fang and GAO Jinghuai. On the choice of parameters for the Chirplet transform[J]. Journal of Xi,an Jiaotong University, 2007, 40(6): 719-723.
    DAUBRCHIES I and MAES S.A Nonlinear Squeezing of the Continuous Wavelet Transform Based on Nerve Models[M]. Boca Raton: CRC Press, 1996: 527-546.
    金艳, 朱敏, 姬红兵. Alpha 稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计[J]. 电子与信息学报, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
    JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
    邱天爽, 张旭秀, 李小兵, 等. 统计信号处理非高斯信号处理及其应用[M]. 北京: 电子工业出版社, 2004: 139-172.
    QIU Tianshuang, ZHANG Xuxiu, LI Xiaobing, et al. Statistical Signal ProcessingNon-Gaussian Signal Processing and Application[M]. Beijing: Electronic Industry Press, 2004: 139-172.
    郑作虎, 王首勇. 复杂海杂波背景下分数低阶匹配滤波检测方法[J] 电子学报, 2016, 44(2): 319-326. doi: 10.3969/j.issn. 0372-2112.2016.02.011.
    ZHENG Zuohu and WANG Shouyong. Radar target detection method of fractional lower order matched filter in complex sea clutter background[J]. Acta Electronica Sinica,
    SHAO M and NIKIAS C L. Signal processing with fractional lower order moments: Stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986-1010.
    NIKIAS C L and SHAO M. Signal Processing with Alpha-stable Distribution and Application[M]. New York: John Wiley Sons, Inc, 1995: 120-128.
    , 44(2): 319-326. doi: 10.3969/j.issn.0372-2112.2016.02. 011.
  • 加载中
计量
  • 文章访问数:  1509
  • HTML全文浏览量:  199
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2017-04-26
  • 刊出日期:  2017-08-19

目录

    /

    返回文章
    返回