FANG Binxing, JIA Yan, and HAN Yi. Social network analysiskey research problems, related work, and future prospects[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(2): 187-199. doi: 10.16418/j.issn.1000-3045.2015.02.007.
|
方滨兴, 贾焰, 韩毅. 社交网络分析核心科学问题、研究现状及未来展望[J]. 中国科学院院刊, 2015, 30(2): 187-199. doi: 10.16418/j.issn.1000-3045.2015.02.007.
|
许进, 杨扬, 蒋飞, 等. 社交网络结构特性分析及建模研究进展[J]. 中国科学院院刊, 2015, 30(2): 216-228. doi: 10.16418/ j.issn.1000-3045.2015.02.009.
|
XU Jin, YANG Yang, JIANG Fei, et al. Social network structure feature analysis and its modelling[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(2): 216-228. doi: 10. 16418/j.issn.1000-3045.2015.02.009.
|
HE L, LU C-T, MA J, et al. Joint community and structural hole spanner detection via harmonic modularity[C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016: 875-884.
|
YING X, WANG C, WANG M, et al. CoDAR: Revealing the generalized procedure recommending algorithms of community detection[C]. Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 2016: 2181-2184.
|
SHAHRIARI M, GUNASHEKAR S, DOMARUS M V, et al. Predictive analysis of temporal and overlapping community structures in social media[C]. Proceedings of the 25th International Conference Companion on World Wide Web, Geneva, Switzerland, 2016: 855-860.
|
LIANG X, TANG J, and PAN L. A neighborhood vector propagation algorithm for community detection[C]. 2014 IEEE Global Communications Conference, Austin, TX, USA, 2014: 2923-2928.
|
WU P and PAN L. Multi-objective community detection based on memetic algorithm[J]. PloS One, 2015, 10(5): e0126845. doi: 10.1371/journal.pone.0126845.
|
CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences, of the United States of America, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
|
KANE G C, ALAVI M, LABIANCA G, et al. What's different about social media networks? A framework and research agenda[J]. MIS Quarterly, 2014, 38(1): 274-304.
|
ATKIN R. Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations[M]. Swiss, Birkhauser, 1977: 71-91.
|
AGGARWAL C C, WOLF J L, YU P S, et al. Fast algorithms for projected clustering[C]. Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, 1999: 61-72.
|
WOO KG, LEE JH, KIM MH, et al. FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting[J]. Information and Software Technology, 2004, 46(4): 255-271.doi: 10.1016/j.infsof.2003.07.003.
|
YIP K P, CHEUNG D W, and NG M K. On discovery of extremely low-dimensional clusters using semi-supervised projected clustering[C]. 21st International Conference on Data Engineering (ICDE'05), Tokoyo, Japan, 2005: 329-340.
|
AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications[C]. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, 1998: 94-105.
|
CHENG C-H, FU A W, and ZHANG Y. Entropy-based subspace clustering for mining numerical data[C]. Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 1999: 84-93.
|
ASSENT I, KRIEGER R, et al. EDSC: Efficient density- based subspace clustering[C]. Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, USA, 2008: 1093-1102.
|
ZHANG X, ZHENG H, LI X, et al. You are where you have been: Sybil detection via geo-location analysis in OSNs[C]. Global Communications Conference, Austin,TX, USA, 2014: 698-703.
|
WANG G, KONOLIGE T, WILSON C, et al. You are how you click: Clickstream analysis for sybil detection[C]. Proceedings of the 22nd USENIX Conference on Security, Washington, DC, USA, 2013: 1-15.
|
McCORD M and CHUAH M. Spam Detection on Twitter Using Traditional Classifiers[M]. In Autonomic and Trusted Computing. Springer, 2011: 175-186.
|
ZHOU Y, CHENG H, and YU J X. Graph clustering based on structural/attribute similarities[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 718-729. doi: 10.14778/ 1687627.1687709.
|
ZHOU Y, CHENG H, and YU J X. Clustering large attributed graphs: An efficient incremental approach[C]. 2010 IEEE International Conference on Data Mining, Sydney, NSW, Australia, 2010: 689-698.
|
CHENG H, ZHOU Y, and YU J X. Clustering large attributed graphs: A balance between structural and attribute similarities[J]. ACM Transactions on Knowledge Discovery from Data, 2011, 5(2): 1-33. doi: 10.1145/1921632.1921638.
|
CHENG H, ZHOU Y, HUANG X, et al. Clustering large attributed information networks: An efficient incremental computing approach[J]. Data Mining and Knowledge Discovery, 2012, 25(3): 450-477. doi: 10.1007/s10618-012- 0263-0.
|
RUAN Y, FUHRY D, and PARTHASARATHY S. Efficient community detection in large networks using content and links[C]. Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 2013: 1089-1098.
|
AKOGLU L, TONG H, MEEDER B, et al. PICS: Parameter-free identification of cohesive subgroups in large attributed graphs[C]. Proceedings of the 2012 SIAM International Conference on Data Mining, Anaheim, CA, USA, 2012: 439-450.
|
XU Z, KE Y, WANG Y, et al. A model-based approach to attributed graph clustering[C]. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale, Arizona, USA, 2012: 505-516.
|
XU Z, KE Y, WANG Y, et al. GBAGC: A general Bayesian framework for attributed graph clustering[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 9(1): 1-43. doi: 10.1145/2629616.
|
WU P and PAN L. Multi-objective community detection method by integrating users' behavior attributes[J]. Neurocomputing, 2016, 210. 13-25. doi: 10.1016/j.neucom. 2015.11.128.
|
SILVA A, WAGNER MEIRA J, and ZAKI M J. Mining attribute-structure correlated patterns in large attributed graphs[J]. Proceedings of the VLDB Endowment, 2012, 5(5): 466-477. doi: 10.14778/2140436.2140443.
|
YANG J, MCAULEY J, and LESKOVEC J. Community detection in networks with node attributes[C]. 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 2013: 1151-1156.
|
GUNNEMANN S, FARBER I, RAUBACH S, et al. Spectral subspace clustering for graphs with feature vectors[C]. 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 2013: 231-240.
|
GUNNEMANN S, FARBER I, BODEN B, et al. GAMer: A synthesis of subspace clustering and dense subgraph mining[J]. Knowledge and Information Systems, 2014, 40(2): 243-278. doi: 10.1007/s10115-013-0640-z.
|
HUANG X, CHENG H, and YU J X. Dense community detection in multi-valued attributed networks[J]. Information Sciences, 2015, 314: 77-99. doi: 10.1016/j.ins.2015.03.075.
|
REVELLE M, DOMENICONI C, SWEENEY M, et al. Finding community topics and membership in graphs[C]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Porto, Portugal, 2015: 625-640.
|
ATZMUELLER M, DOERFEL S, and MITZLAFF F. Description-oriented community detection using exhaustive subgroup discovery[J]. Information Sciences, 2016, 329. 965-984. doi: 10.1016/j.ins.2015.05.008.
|
YIN H, HU Z, ZHOU X, et al. Discovering interpretable geo-social communities for user behavior prediction[C]. 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 2016: 942-953.
|
LIU L, XU L, WANGY Z, et al. Community detection based on structure and content: A content propagation perspective [C]. 2015 IEEE International Conference on Data Mining (ICDM), Atlantic City, NJ, USA, 2015: 271-280.
|
POOL S, BONCHI F, and LEEUWEN M V. Description- driven community detection[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(2): 28. doi: 10.1145/2517088.
|
PEROZZI B, AKOGLU L, et al. Focused clustering and outlier detection in large attributed graphs[C]. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2014: 1346-1355.
|
THOMAS K, MCCOY D, GRIER C, et al. Trafficking fraudulent accounts: The role of the underground market in Twitter spam and abuse[C]. Proceedings of the 22nd USENIX Conference on Security, Washington, D.C., USA, 2013: 195-210.
|
HUANG T-K, RAHMAN M S, MADHYASTHA H V, et al. An analysis of socware cascades in online social networks[C]. Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 2013: 619-630.
|
ZHANG X, LI Z, ZHU S, et al. Detecting spam and promoting campaigns in Twitter[J]. ACM Transactions on the Web, 2016, 10(1): 1-28. doi: 10.1145/2846102.
|
SINGH A, NGAN T W, DRUSCHEL P, et al. Eclipse attacks on overlay networks: Threats and defenses[C]. 25th IEEE International Conference on Computer Communications, Waikoloa, Hawaii, USA, 2006: 1-12.
|
SIT E and MORRIS R. Security considerations for peer-to- peer distributed hash tables[C]. Revised Papers from the First International Workshop on Peer-to-Peer Systems, Springer-Verlag, 2002: 261-269.
|
ZUBIAGA A, LIAKATA M, PROCTER R, et al. Towards detecting rumours in social media[C]. Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015: 35-41.
|
程晓涛, 刘彩霞, 刘树新. 基于关系图特征的微博水军发现方法[J]. 自动化学报, 2015, 41(9): 1533-1541.
|
CHENG Xiaotao, LIU Caixia, and LIU Shuxin. Graph-based features for identifying spammers in microblog networks[J]. Acta Automatica Sinica, 2015, 41(9): 1533-1541.
|
VISWANATH B, MONDAL M, CLEMENT A, et al. Exploring the design space of social network-based sybil defenses[C]. 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS 2012), Bangalore, India, 2012: 1-8.
|
VISWANATH B, POST A, GUMMADI K P, et al. An analysis of social network-based sybil defenses[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(4): 363-374. doi: 10.1145/1851275.1851226.
|
DANEZIS G and MITTAL P. SybilInfer: Detecting sybil nodes using social networks[C]. The Network and Distributed System Security Symposium, San Diego, CA, USA, 2009.
|
KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]. 2013 IEEE 13th International Conference on Data Mining (ICDM), Dallas, TX, USA, 2013: 1103-1108.
|
GAN Q and SUEL T. Improving web spam classifiers using link structure[C]. Proceedings of the 3rd International Workshop on Adversarial Information Retrieval on the Web, Banff, Alberta, Canada, 2007: 17-20.
|
BOYKIN P O and ROYCHOWDHURY V P. Leveraging social networks to fight spam[J]. Computer, 2005, 38(4): 61-68. doi: 10.1109/MC.2005.132.
|
FAKHRAEI S, FOULDS J, SHASHANKA M, et al. Collective spammer detection in evolving multi-relational social networks[C]. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 2015: 1769-1778.
|
HU X, TANG J, GAO H, et al. Social spammer detection with sentiment information[C]. Proceedings of the 2014 IEEE International Conference on Data Mining, Shenzhen, China, 2014: 180-189.
|
SHAMS R and MERCER R E. Classifying spam emails using text and readability features[C]. 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 2013: 657-666.
|
SANDULESCU V and ESTER M. Detecting singleton review spammers using semantic similarity[C]. Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 2015: 971-976.
|
CASTILLO C, MENDOZA M, and POBLETE B. Information credibility on Twitter[C]. Proceedings of the 20th International Conference on World Wide Web, New York, NY, USA, 2011: 675-684.
|
ENNALS R, BYLER D, AGOSTA J M, et al. What is disputed on the web?[C]. Proceedings of the 4th Workshop on Information Credibility, Raleigh, North Carolina, USA, 2010: 67-74.
|
ZHAO Z, RESNICK P, and MEI Q. Enquiring minds: Early detection of rumors in social media from enquiry posts[C]. Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 2015: 1395-1405.
|
TAKAHASHI T and IGATA N. Rumor detection on Twitter[C]. Joint 6th International Conference on Soft Computing and Intelligent Systems and 13th International Symposium on Advanced Intelligent Systems, Kobe, Japan, 2012: 452-457.
|
ZHOU X, CAO J, JIN Z, et al. Real-time news certification system on Sina Weibo[C]. Proceedings of the 24th[61] International Conference on World Wide Web, Florence,
|
Italy, 2015: 983-988.
|
NOH G and KIM C K. RobuRec: Robust sybil attack defense in online recommender systems[C]. 2013 IEEE International Conference on Communications, Budapest, Hangary, 2013: 2001-2005.
|
YANG Y, SUN Y, KAY S, et al. Securing rating aggregation systems using statistical detectors and trust[J]. IEEE Transactions on Information Forensics Security, 2009, 4(4): 883-898. doi: 10.1109/TIFS.2009.2033741.
|
YU H, SHI C, KAMINSKY M, et al. DSybil: Optimal sybil-resistance for recommendation systems[C]. 30th IEEE Symposium on Security and Privacy, Washington, DC, USA, 2009: 283-298.
|
GUPTA A and KUMARAGURU P. Credibility ranking of tweets during high impact events[C]. Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, Lyon, France, 2012: 2-8.
|
GUPTA A, LAMBA H, and KUMARAGURU P. Prayforboston: Analyzing fake content on Twitter[C]. eCrime Researchers Summit, San Francisco, CA, USA, 2013: 1-12.
|
CAO Q, YANG X, YU J, et al. Uncovering large groups of active malicious accounts in online social networks[C]. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, Arizona, USA, 2014: 477-488.
|
MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites[C]. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 2015: 1751-1754.
|