高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MORUS算法的抗碰撞性分析

关杰 施泰荣 李俊志 张沛

关杰, 施泰荣, 李俊志, 张沛. MORUS算法的抗碰撞性分析[J]. 电子与信息学报, 2017, 39(7): 1704-1710. doi: 10.11999/JEIT161185
引用本文: 关杰, 施泰荣, 李俊志, 张沛. MORUS算法的抗碰撞性分析[J]. 电子与信息学报, 2017, 39(7): 1704-1710. doi: 10.11999/JEIT161185
GUAN Jie, SHI Tairong, LI Junzhi, ZHANG Pei. Analysis of MORUS Against Collision Attack[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1704-1710. doi: 10.11999/JEIT161185
Citation: GUAN Jie, SHI Tairong, LI Junzhi, ZHANG Pei. Analysis of MORUS Against Collision Attack[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1704-1710. doi: 10.11999/JEIT161185

MORUS算法的抗碰撞性分析

doi: 10.11999/JEIT161185
基金项目: 

国家自然科学基金(61572516, 61272041, 61272488)

Analysis of MORUS Against Collision Attack

Funds: 

The National Natural Science Foundation of China (61572516, 61272041, 61272488)

  • 摘要: MORUS算法是CAESAR竞赛第3轮的候选认证加密算法之一,该文评估了MORUS-640-128算法对碰撞攻击的安全性。由碰撞关系确定一系列非线性方程,采用分块分析的方法,从非线性方程中找到消息字差分间的信息泄漏规律,首次给出了算法在两步后发生碰撞的必要条件集,确定了输入差分的字分布情况。在此基础上,将碰撞的必要条件转化成伪布尔函数最优化问题,利用混合整数规划模型进行求解。实验结果显示算法发生碰撞时,输入差的汉明重量至少为28,其碰撞概率小于2-140 ,得到了比文献[7]更紧致的概率上界(原为2-130)。结果表明MORUS-640-128算法具备良好的抗碰撞攻击能力。
  • BELLARE M and NAMPREMPRE C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm[J]. Journal of Cryptology, 2008, 21(4): 469-491. doi: 10.1007/s00145-008-9026-x.
    DOBRAUNING C, EICHLSEDER M, and MENDEL F. Heuristic tool for linear cryptanalysis with applications to CAESAR candidates[C]. Advances in Cryptology ASIACRYPT 2015, Auckland, New Zealand, 2015: 490-509. doi: 10.1007/978-3-662-48800-3_20.
    DEY P, ROHIT S R, SARKAR S, et al. Differential fault analysis on Tiaoxin and AEGIS family of ciphers[C]. Security in Computing and Communications 2016, Jaipur, India, 2016: 74-86. doi: 10.1007/978-981-10-2738-3_7.
    PEYRIN T, SIM S, WANG L, et al. Cryptanalysis of JAMBU[C]. Fast Software Encryption 2015, Istanbul, Turkey, 2015: 264-281. doi: 10.1007/978-3-662-48116-5_13.
    SALAM M, BARTLETT H, PIEPRZYK J, et al. Investigating cube attack on the authenticated encryption stream cipher ACORN[C]. Applications and Techniques in Information Security 2016, Cairns, QLD, Australia, 2016: 15-26. doi: 10.1007/978-981-10-2741-3_2.
    MILEVA A, DIMITROVA V, and VELICHKOV V. Analysis of the authenticated cipher MORUS (v1)[C]. Cryptography and Information Security in the Balkans 2015, Koper, Slovenia, 2015: 45-59. doi: 10.1007/978-3-319-29172-7_4.
    张沛, 关杰, 李俊志, 等. MORUS算法初始化过程的混乱与扩散性质研究[J]. 密码学报, 2015, 2(6): 536-548. doi: 10.13868/j.cnki.jcr.000100.
    ZHANG Pei, GUAN Jie, LI Junzhi, et al. Research on the confusion and diffusion properties of the initialization of MORUS[J]. Journal Cryptologic Research, 2015, 2(6): 536-548. doi: 10.13868/j.cnki.jcr.000100.
    WANG Xiaoyun and YU Hongbo. How to break MD5 and other hash functions[C]. Advances in Cryptology EUROCRYPT 2005, Aarhus, Denmark, 2005: 19-35. doi: 10.1007/11426639_2.
    FUHR T, LEURENT G, and SUDER V. Collision attacks against CAESAR candidatesForgery and key-recovery against AEZ and Marble[C]. Advances in Cryptology ASIACRYPT 2015, Auckland, New Zealand, 2015: 510-532. doi: 10.1007/978-3-662-48800-3_21.
    PEYRIN T. Collision attack on Grindahl[J]. Journal of Cryptology, 2015, 28(4): 879-898. doi: 10.1007/s00145- 014-9186-9.
    BERTSIMAS D and WEISMANTEL R. Optimization over Integers[M]. Massachusetts, USA, Dynamic Ideas, 2005: 73-82.
    ACHTERBERG T. SCIP: Solving Constraint Integer Programs[J]. Mathematical Programming Computation, 2009, 1(1): 1-41. doi: 10.1007/s12532-008-0001-1.
  • 加载中
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  185
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-03
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回