高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构稀疏性的单次曝光相位成像算法

练秋生 齐秀梅 陈书贞 石保顺

练秋生, 齐秀梅, 陈书贞, 石保顺. 基于结构稀疏性的单次曝光相位成像算法[J]. 电子与信息学报, 2017, 39(7): 1546-1553. doi: 10.11999/JEIT161171
引用本文: 练秋生, 齐秀梅, 陈书贞, 石保顺. 基于结构稀疏性的单次曝光相位成像算法[J]. 电子与信息学报, 2017, 39(7): 1546-1553. doi: 10.11999/JEIT161171
LIAN Qiusheng, Qi Xiumei, CHEN Shuzhen, SHI Baoshun. Single-shot Phase Imaging Algorithm Based on Structural Sparsity[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1546-1553. doi: 10.11999/JEIT161171
Citation: LIAN Qiusheng, Qi Xiumei, CHEN Shuzhen, SHI Baoshun. Single-shot Phase Imaging Algorithm Based on Structural Sparsity[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1546-1553. doi: 10.11999/JEIT161171

基于结构稀疏性的单次曝光相位成像算法

doi: 10.11999/JEIT161171
基金项目: 

国家自然科学基金(61471313),河北省自然科学基金(F2014203076)

Single-shot Phase Imaging Algorithm Based on Structural Sparsity

Funds: 

The National Natural Science Foundation of China (61471313), The Natural Science Foundation of Hebei Province (F2014203076)

  • 摘要: 相位成像的关键是相位恢复。由于相位信息的丢失,相位恢复通常是不适定的,如何利用合适的先验信息进行相位恢复是一个重要问题。该文在SPICA成像系统下提出了基于结构稀疏性的单次曝光相位成像算法。该算法利用图像全变差的重叠组结构稀疏性,将重叠的结构稀疏正则项以卷积形式表示,使求解过程更简单,并利用最速下降法求解相应的优化问题。实验结果表明,该算法在有噪声的情况下能够有效地实现对复图像的重构。
  • TIAN L and WALLER L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403. doi: 10.1364/OE.23. 011394.
    SHECHTMAN Y, ELDAR Y C, COHEN O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 88-109. doi: 10.1109/MSP.2014.2352673.
    MAJI S K, YAHIA H M, and FUSCO T. A multifractal-based wavefront phase estimation technique for ground-based astronomical observations[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(3): 1705-1715. doi: 10.1109/TGRS.2015.2487546.
    SCHWESER F, DEISTUNG A, and REICHENBACH J R. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)[J]. Zeitschrift Fr Medizinische Physik, 2015, 26(1): 6-34.doi: 10.1016/ j.zemedi.2015.10.002.
    DESSE J M, PICART P, and OLCHEWSKY F. Quantitative phase imaging in flows with high resolution holographic diffraction grating[J]. Optics Express, 2015, 23(18): 23726-23737. doi: 10.1364/OE.24.014322.
    GERCHBERG R and SAXON W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. International Journal for Light and Electron Optics, 1972, 35(2): 237-250.
    杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.
    YANG Guozhen and GU Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.
    FIENUP J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/ A0.21.002758.
    RODRIGUEZ J A, XU R, Chen C C, et al. Oversampling smoothness (OSS): An effective algorithm for phase retrieval of noisy diffraction intensities[J]. Applied Crystallography, 2013, 46(2): 312-318. doi: 10.1107/S0021889813002471.
    CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2): 225-251. doi: 10.1137/110848074.
    程鸿, 章权兵, 韦穗. 基于整体变分的相位恢复[J]. 中国图象图形学报, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
    CHENG Hong, ZHANG Quanbing, and WEI Sui. Phase retrieval based on total variation[J]. Journal of Image and Graphics, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
    LOOCK S and PLONKA G. Phase retrieval for Fresnel measurements using a shearlet sparsity constraint[J]. Inverse Problems, 2014, 30(5): 1-13. doi: 10.1088/0266-5611/30/5/ 055005.
    杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复[J]. 物理学报, 2013, 62(10): 104203.doi: 10.7498/aps.62.104203.
    YANG Zhenya and ZHENG Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203.
    BATES R H T. Uniqueness of solutions to two-dimensional Fourier phase problems for localized and positive images[J]. Computer Vision Graphics Image Processing, 1984, 25(2): 205-217.
    HORISAKI R, OGURA Y, AINO M, et al. Single-shot phase imaging with a coded aperture[J]. Optics Letters, 2014, 39(22): 6466-6469. doi: 10.1364/OL.39.006466.
    BIOUCASDIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/ thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/ TIP.2007.909319.
    EGAMI R, HORISAKI R, TIAN L, et al. Relaxation of mask design for single-shot phase imaging with a coded aperture[J]. Applied Optics, 2016, 55(8): 1830-1837. doi: 10.1364/AO. 55.001830.
    SHERVASHIDZE N and BACH F. Learning the Structure for Structured Sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902. doi: 10.1109/TSP.2015. 2446432.
    LIU J, HUANG T Z, SELESNICK I W, et al. Image restoration using total variation with overlapping group sparsity[J]. Information Sciences, 2015, 295: 232-246. doi: 10.1016/j.ins.2014.10.041.
    CHEN P Y and SELESNICK I W. Group-sparse signal denoising: Non-convex regularization, convex optimization[J]. IEEE Transactions on Signal Processing, 2013, 62(13): 3464-3478. doi: 10.1109/TSP.2014.2329274.
    HUANG J, HUANG X, and METAXAS D. Learning with dynamic group sparsity[C]. IEEE International Conference on Computer Vision, Japan, 2009: 64-71.
    SELESNICK I W and CHEN P Y. Total variation denoising with overlapping group sparsity[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013: 5696-5700.
    CHEN P Y and SELESNICK I W. Translation-invariant shrinkage/thresholding of group sparse signals[J]. Signal Processing, 2014, 94(1): 476-489. doi: 10.1016/j.sigpro. 2013.06.011
    Gray R M. Toeplitz and circulant matrices: A review[J]. Foundations and Trends in Communications and Information Theory, 2006, 2(3): 155-239. doi: 10.1561/0100000006.
    CANDES E J, LI X, and SOLTANOLKOTABI M. Phase retrieval via wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2014, 61(4): 1985-2007. doi: 10.1109/TIT.2015.2399924.
  • 加载中
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  121
  • PDF下载量:  781
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 修回日期:  2017-02-26
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回