高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种视频压缩感知中两级多假设重构及实现方法

欧伟枫 杨春玲 戴超

欧伟枫, 杨春玲, 戴超. 一种视频压缩感知中两级多假设重构及实现方法[J]. 电子与信息学报, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
引用本文: 欧伟枫, 杨春玲, 戴超. 一种视频压缩感知中两级多假设重构及实现方法[J]. 电子与信息学报, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
Citation: OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142

一种视频压缩感知中两级多假设重构及实现方法

doi: 10.11999/JEIT161142
基金项目: 

国家自然科学基金(61471173),广东省自然科学基金(2016A030313455)

A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing

Funds: 

The National Natural Science Foundation of China (61471173), The Natural Science Foundation of Guangdong Province (2016A030313455)

  • 摘要: 视频压缩感知在采集端资源受限的视频采集应用场景有重要研究意义。重构算法是视频压缩感知的关键技术,基于多假设预测的预测-残差重构框架具有良好的重构性能。但现有的多假设预测算法大多在观测域提出,这种预测方法由于受到不重叠分块的限制,造成了预测帧的块效应,降低了重构质量。针对此问题,该文将像素域多假设预测与观测域多假设预测相结合,提出两级多假设重构思想(2sMHR),并设计了基于图像组(Gw_2sMHR)和基于帧(Fw_2sMHR)的两种实现方法。仿真结果表明,所提2sMHR重构算法能有效减小块效应,相比于现有最好的多假设预测算法具有更低的时间复杂度和更高的视频重构质量。
  • LIU Y and PADOS D A. Compressed-sensed-domain L1-PCA video surveillance[J]. IEEE Transactions on Multimedia, 2016, 18(3): 351-363. doi: 10.1109/TMM.2016. 2514848.
    GUO J, SONG B, and DU X. Significance evaluation of video data over media cloud based on compressed sensing[J]. IEEE Transactions on Multimedia, 2016, 18(7): 1297-1304. doi: 10.1109/TMM.2016.2564100.
    REHMAN A U, SHAH G A, and TAHIR M. Compressed sensing based adaptive video coding for resource constrained devices[C]. IEEE International Wireless Communications and Mobile Computing Conference, Paphos, Cyprus, 2016: 170-175.
    WANG J, GUPTA M, and SANKARANARAYANAN A C. LiSensA scalable architecture for video compressive sensing[C]. IEEE International Conference on Computational Photography, Houston, TX, 2015: 1-9.
    LLULL P, LIAO X J, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics Express, 2013, 21(9): 10526-10545. doi: 10.1364/OE.21.010526.
    HOSSEINI M S and PLATANIOTIS K N. High-accuracy total variation with application to compressed video sensing [J]. IEEE Transactions on Image Processing, 2014, 23(9): 3869-3884. doi: 10.1109/TIP.2014.2332755.
    YANG J B, YUAN X, LIAO X J, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4863-4878. doi: 10.1109/TIP.2014.2344294.
    常侃, 覃团发, 唐振华. 基于联合总变分最小化的视频压缩感知重建算法[J]. 电子学报, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
    CHANG K, QIN T F, and TANG Z H. Reconstruction algorithm for compressed sensing of video based on joint total variation minimization[J]. Acta Electronica Sinica, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
    ZHAO C, MA S W, ZHANG J, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, to be published. doi: 10.1109/TCSVT. 2016.2527181.
    MUN S and FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]. IEEE Data Compression Conference, Snowbird, 2011: 183-192.
    NARAYANAN S and MAKUR A. Compressive coded video compression using measurement domain motion estimation [C]. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, 2014: 1-6.
    GUO J, SONG B, LIU H X, et al. Motion estimation in measurement domain for compressed video sensing[C]. IEEE International Conference on Computer and Information Technology, Xi,an, 2014: 441-445.
    DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[C]. IEEE International Conference on Image Processing, Cairo, 2009: 1393-1396.
    TRAMEL E W and FOWLER J E. Video compressed sensing with multihypothesis[C]. IEEE Data Compression
    Conference, Snowbird, 2011: 193-202.
    AZGHANI M, KARIMI M, and MARVASTI F. Multihypothesis compressed video sensing technique[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(4): 627-635. doi: 10.1109/TCSVT.2015. 2418586.
    CHEN J, CHEN Y, QIN D, et al. An elastic net-based hybrid hypothesis method for compressed video sensing[J]. Multimedia Tools Applications, 2013, 74(6): 2085-2108. doi: 10.1007/s11042-013-1743-y.
    KUO Y H, WU K, and CHEN J. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129-148. doi: 10.1007/s11045- 015-0337-4.
    GAN L. Block compressed sensing of natural images[C]. IEEE International Conference on Digital Signal Processing, Cardiff, 2007: 403-406.
    OU W F, YANG C L, LI W H, et al. A two-stage multi- hypothesis reconstruction scheme in compressed video sensing[C]. IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016: 2494-2498.
    杨春玲, 欧伟枫. CVS中基于多参考帧的最优多假设预测算法[J]. 华南理工大学学报(自然科学版), 2016, 44(1): 1-8. doi: 10.3969/j.issn.1000-565X.2016.01.001.
    YANG C L and OU W F. Multi-reference frames-based optimal multi-hypothesis prediction in compressed video sensing[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 1-8. doi: 10.3969/ j.issn.1000-565X.2016.01.001.
    MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. IEEE International Conference on Image Processing, Cairo, 2009: 3021-3024.
  • 加载中
计量
  • 文章访问数:  1273
  • HTML全文浏览量:  220
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回