高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维成像声呐分区域FFT波束形成算法设计

于涤非 黄海宁 张春华 吴长瑞

于涤非, 黄海宁, 张春华, 吴长瑞. 三维成像声呐分区域FFT波束形成算法设计[J]. 电子与信息学报, 2017, 39(9): 2175-2181. doi: 10.11999/JEIT161132
引用本文: 于涤非, 黄海宁, 张春华, 吴长瑞. 三维成像声呐分区域FFT波束形成算法设计[J]. 电子与信息学报, 2017, 39(9): 2175-2181. doi: 10.11999/JEIT161132
YU Difei, HUANG Haining, ZHANG Chunhua, WU Changrui . The Design of Sub Region FFT Beam Forming Algorithm of 3D-sonar[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2175-2181. doi: 10.11999/JEIT161132
Citation: YU Difei, HUANG Haining, ZHANG Chunhua, WU Changrui . The Design of Sub Region FFT Beam Forming Algorithm of 3D-sonar[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2175-2181. doi: 10.11999/JEIT161132

三维成像声呐分区域FFT波束形成算法设计

doi: 10.11999/JEIT161132
基金项目: 

国家自然科学基金(11304343)

The Design of Sub Region FFT Beam Forming Algorithm of 3D-sonar

Funds: 

The National Natural Science Foundation of China (11304343)

  • 摘要: 为解决传统均匀FFT波束形成算法引起的3维声呐成像分辨率降低的问题,该文提出分区域FFT波束形成算法。远场条件下,以保证成像分辨率为约束条件,以划分数量最少为目标,采用遗传算法作为优化手段将成像区域划分为多个区域。在每个区域内选取一个波束方向,获得每一个接收阵元收到该方向回波时的解调输出,以此为原始数据在该区域内进行传统均匀FFT波束形成。对FFT计算过程进行优化,降低新算法的计算量,使其满足3维成像声呐实时性的要求。仿真与实验结果表明,采用分区域FFT波束形成算法的成像分辨率较传统均匀FFT波束形成算法有显著提高,且满足实时性要求。
  • LI Bin, JIN Lijun, HONG Jia, et al. Application of three- dimension imaging sonar technology in detection of underwater structure[J]. Journal of Water Resources Water Engineering, 2015, 26(3): 184-188. doi: 10.11705/j.issn. 1672-643X.2015.03.38.
    李斌, 金利军, 洪佳, 等. 三维成像声纳技术在水下结构探测中的应用[J]. 水资源与水工程学报, 2015, 26(3): 184-188. doi: 10. 11705/j.issn.1672-643X.2015.03.38.
    王朋. 基于稀疏布阵的三维成像声纳信号处理算法研究[D]. [博士论文], 中国科学院大学, 2015: 40-90.
    WANG Peng. Research on signal processing algorithm of three-dimensional acoustical imaging sonar based on sparse planar array [D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2015: 40-90.
    袁龙涛. 相控阵三维摄像声纳系统信号处理关键技术研究[D]. [博士论文], 浙江大学, 2013: 67-83.
    YUAN Longtao. Research on key technologies of signal processing for phased array three-dimensional imaging sonar system [D]. [Ph.D. dissertation], Zhejiang University, 2013: 67-83.
    陈朋. 相控阵三维成像声纳系统的稀疏阵及波束形成算法研究[D]. [博士论文], 浙江大学, 2009: 61-79.
    CHEN Peng. Research on sparse array and beamforming algorithm for phased array three-dimensional imaging sonar system[D]. [Ph.D. dissertation], Zhejiang University, 2009: 61-79.
    李启虎. 声呐信号处理引论[M]. 北京: 海洋出版社, 2000: 222-224.
    LI Qihu. Introduction to Sonar Signal Processing [M]. Beijing: China Ocean Press, 2000: 222-224.
    HAMPSON G and PAPLINSKI A. phase shift beamforming using Cordic[C]. International Symposium on Signal Processing and Its Applications, ISSPA, Gold Coast, Austrilia, 1996: 684-687.
    印明明, 刘平香. GPU实现水下三维成像研究[J]. 声学技术, 2014, 33(5): 53-57.
    YIN Mingming and LIU Pingxiang. Study on 3D image sonar based on GPU[J]. Technical Acoustics, 2014, 33(5): 53-57.
    胡将. 基于Kintex-7的三维声学成像主信号处理系统硬件设计[D]. [硕士论文], 浙江大学, 2016: 17-47.
    HU Jiang. Hardware design of three-dimensional acoustic imaging main signal processing system based on Kintex-7[D]. [Master dissertation], Zhejiang University, 2016: 17-47.
    PALMESE M and TRUCCO A. Three-dimensional acoustic imaging by Chirp Zeta transform digital beamforming[J]. IEEE Transactions on Instrumentation and Measurement. 2009, 58(7): 2080-2086. doi: 10.1109/TIM.2009.2015523.
    CHI Cheng, LI Zhaohui, and LI Qihu. Fast broadband beamforming using nonuniform fast Fourier transform for underwater real-time 3-D acoustical imaging[J]. IEEE Journal of Oceanic Engineering, 2016, 41(2): 249-261. doi: 10.1109/JOE.2015.2429251.
    王朋, 张扬帆, 黄勇, 等. 基于稀疏布阵的实时三维成像声纳系统[J]. 仪器仪表学报, 2016, 37(4): 843-851.
    WANG Peng, ZHANG Yangfan, HUANG Yong, et al. Real- time 3D acoustical imaging sonar system based on sparse planar array[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 843-851.
    王继强. 集合覆盖问题的模型与算法[J]. 计算机工程与应用, 2013, 49(17): 15-17. doi: 10.3778/j.issn.1002-8331.1303-0383.
    WANG Jiqiang. Model and algorithm for set cover problem[J]. Computer Engineering and Applications, 2013, 49(17): 15-17. doi: 10.3778/j.issn.1002-8331.1303-0383.
    ZHANG Xinyang, ZHANG Jun, GONG Yuejiao, et al. Kuhn- Munkres parallel genetic algorithm for the set cover problem and its application to large-scale wireless sensor networks[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 695-710. doi: 10.1109/TEVC.2015.2511142.
    MAHMOUD Owais, MOSTAFA K, and GHADA Moussa. Multi-objective transit route network design as set covering problem[J]. IEEE Transactions on Intelligent Transportation System, 2016, 17(3): 670-679. doi: 10.1109/TITS.2015. 2480885.
    XU Yihu and LIM Myongseob. Split-radix FFT pruning for the reduction of computational complexity in OFDM based cognitive radio system[C]. Proceedings of the IEEE International Symposium on Circuits and Systems(ISCAS), Paris, 2010: 69-72. doi: 10.1109/ISCAS.2010.5537048.
    程静静. 阵列幅相误差校正及实现研究[D]. [硕士论文], 南京理工大学, 2014: 36-53.
    CHENG Jingjing. Research on implementation of array gain and phase error calibraion[D]. [Master dissertation], Nanjing University of Science and Technology, 2014: 36-53.
  • 加载中
计量
  • 文章访问数:  1347
  • HTML全文浏览量:  105
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-25
  • 修回日期:  2017-05-31
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回