高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的污损指纹识别研究

吴震东 王雅妮 章坚武

吴震东, 王雅妮, 章坚武. 基于深度学习的污损指纹识别研究[J]. 电子与信息学报, 2017, 39(7): 1585-1591. doi: 10.11999/JEIT161121
引用本文: 吴震东, 王雅妮, 章坚武. 基于深度学习的污损指纹识别研究[J]. 电子与信息学报, 2017, 39(7): 1585-1591. doi: 10.11999/JEIT161121
WU Zhendong, WANG Yani, ZHANG Jianwu. Fouling and Damaged Fingerprint Recognition Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1585-1591. doi: 10.11999/JEIT161121
Citation: WU Zhendong, WANG Yani, ZHANG Jianwu. Fouling and Damaged Fingerprint Recognition Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1585-1591. doi: 10.11999/JEIT161121

基于深度学习的污损指纹识别研究

doi: 10.11999/JEIT161121
基金项目: 

国家重点研发计划(2016YFB0800201),浙江省自然科学基金(LY16F020016),浙江省重点科技创新团队项目(2013TD03)

Fouling and Damaged Fingerprint Recognition Based on Deep Learning

Funds: 

The National Key Research and Development Program of China (2016YFB0800201), The Natural Science Fundation of Zhejiang Province (LY16F020016), Zhejiang Provincial Science and Technology Innovation Program (2013TD03)

  • 摘要: 随着社会信息化水平的提高及不稳定因素的增加,人们迫切需要更加可靠的识别技术对身份进行认证。因此,利用生物特征进行鉴定已成为时下热潮。其中的指纹识别更是因其方便性和可靠性受到普遍认同。传统的指纹识别方法基于特征点比对寻求相似性,此种方法特征点寻找容易出错,且随着指纹的模糊、破坏、污损或是其他问题,均会使识别率明显降低。针对这些问题,该文提出基于深度卷积神经网络(CNN)的CBF-FFPF(Central Block Fingerprint and Fuzzy Feature Points Fingerprint)算法对污损指纹图像进行分类识别。CBF-FFPF算法提取指纹中心点分块图像及特征点模糊化图,合并后输入CNN网络,进行指纹深层特征识别。将该算法与基于主成分分析(KPCA),超限学习机(ELM)和k近邻分类器(KNN)的指纹识别算法进行比较,实验结果表明,所提出的CBF-FFPF算法对污损指纹识别有更高的识别率和更好的鲁棒性。
  • HAGHIGHAT M, ZONOUZ S, and ABDEL-MOTTALEB M. CloudID: Trustworthy cloud-based and cross-enterprise biometric identification[J]. Expert Systems with Applications, 2015, 42(21): 7905-7916. doi: 10.1016/j.eswa.2015.06.025.
    JAIN A K, FENG J J, and NANDAKUMAR K. Fingerprint matching[J]. Computer, 2010, 43(2): 36-44. doi: 10.1109/MC. 2010.38.
    LIU Eryun, ZHAO Heng, LIANG Jimin, et al. Random local region descriptor (RLRD): A new method for fixed-length feature representation of fingerprint image and its application to template protection[J]. Future Generation Computer Systems, 2012, 28(1): 236-243. doi: 10.1016/j.future.2011.01. 001.
    PAULINO A A, FENG J J, and JAIN A K. Latent fingerprint matching using descriptor-based hough transform [J]. IEEE Transactions on Information Forensics and Security, 2011, 8(1): 31-45. doi: 10.1109/IJCB.2011.6117483.
    FENG J J, ZHOU J, and JAIN A K. Orientation field estimation for latent fingerprint enhancement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 925-940.
    KRISH R P, FIERREZ J, RAMOS D, et al. Pre-registration for improved latent fingerprint identification[C]. International Conference on Pattern Recognition, Stockholm, Sweden, 2014: 696-701. doi: 10.1109/ICPR.2014.130.
    FANG B, WEN H, LIU R Z, et al. A new fingerprint thinning algorithm[C]. 2010 Chinese Conference on Pattern Recognition (CCPR), Changsha, China, 2010: 1-4. doi: 10.1109/CCPR.2010.5659273.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097-1105.
    HINTON G and OSINDERO S. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527.
    SAINATH T N, KINGSBURY B, SAON G, et al. Deep convolutional neural networks for large-scale speech tasks[J]. Neural Networks, 2015, 64(4): 39-48. doi: 10.1016/j.neunet. 2014.08.005.
    LAVIN A. maxDNN: An efficient convolution kernel for deep learning with maxwell GPUs[OL]. https://arxiv.org/abs/ 1501.06633, 2015.
    ARPIT D and NAMBOODIRI A. Fingerprint feature extraction from gray scale images by ridge tracing[C]. International Joint Conference on Biometrics, Washington DC, USA, 2011: 1-8. doi: 10.1109/IJCB.2011.6117533.
    CHANG C C, HWANG S M, and BUEHRER D J. A shape recognition scheme based on relative distances of feature points from the centroid[J]. Pattern Recognition, 1991, 24(11): 1053-1063. doi: 10.1016/0031-3203(91)90121-K.
    IWASOKUN G B and AKINYOKUN O C. Fingerprint singular point detection based on modified poincare index method[J]. International Journal of Signal Processing Image Processing Pattern Recognition, 2014, 7(5): 259-272. doi: 10.14257/ijsip.2014.7.5.23.
    KUMAR R, HANMANDLU M, and CHANDRA P. An empirical evaluation of rotation invariance of LDP feature for fingerprint matching using neural networks[J]. International Journal of Computational Vision Robotics, 2014, 4(4): 330-348. doi: 10.1504/IJCVR.2014.065569.
    WANG R, HAN C, WU Y, et al. Fingerprint classification based on depth neural network[OL]. https:// arxiv.org/abs/ 1409.5188,2014.
    KANAAN L, MERHEB D, KALLAS M, et al. PCA and KPCA of ECG signals with binary SVM classification[C]. IEEE Workshop on Signal Processing Systems, Beirut, Lebanon, 2011: 344-348. doi: 10.1109/SiPS.2011.6089000.
    HUANG G B, ZHU Q Y, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. doi: 10.1016/j.neucom.2005.12.126.
  • 加载中
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  242
  • PDF下载量:  1138
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-21
  • 修回日期:  2017-04-01
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回