高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊聚类的多分辨率社区发现方法

汪晓锋 刘功申 李建华

汪晓锋, 刘功申, 李建华. 基于模糊聚类的多分辨率社区发现方法[J]. 电子与信息学报, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
引用本文: 汪晓锋, 刘功申, 李建华. 基于模糊聚类的多分辨率社区发现方法[J]. 电子与信息学报, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
WANG Xiaofeng, LIU Gongshen, LI Jianhua. Multiresolution Community Detection Based on Fuzzy Clustering[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
Citation: WANG Xiaofeng, LIU Gongshen, LI Jianhua. Multiresolution Community Detection Based on Fuzzy Clustering[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116

基于模糊聚类的多分辨率社区发现方法

doi: 10.11999/JEIT161116
基金项目: 

国家973关键技术研究项目(2013CB329603),国家自然科学基金(61472248, 61431008)

Multiresolution Community Detection Based on Fuzzy Clustering

Funds: 

The National 973 Key Basic Research Program of China (2013CB329603), The National Natural Science Foundation of China (61472248, 61431008)

  • 摘要: 针对网络结构的复杂性和群体划分的不确定性,该文提出一种基于模糊聚类的多分辨率社区结构发现方法。该方法用模糊方法来处理网络节点间的相似性,以实现社区结构的模糊划分。基于节点间的局部交互信息,考虑节点间的模糊关系和网络拓扑结构相似性传递,实现网络社区的层次聚类。并通过调节模糊参数,挖掘出不同分辨率下的社区结构。同时为了避免主观地确定社区数目,引入一种新的模块度以度量社区划分结果。实验证明该方法能够有效且稳定地揭示潜在的社区结构。
  • WANG Xiaofan, LI Xiang, and CHEN Guanrong. Network Science: A Introduction[M]. Beijing: Higher Education Press, 2012: 1-27.
    汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012: 1-27.
    NEWMAN M E J. Complex systems: A survey[J]. American Journal of Physics, 2011, 79(8): 800-810. doi: 10.1119/ 1.3590372.
    FORTUNAO S and DARKO H. Community detection in networks: A user guide[J]. Physics Reports, 2016, 659: 1-44. doi: 10.1016/j.physrep.2016.09.002.
    ZHANG P, MOORE C, and NEWMAN M E J. Community detection in networks with unequal groups[J]. Physical Review E, 2016, 93(1): 012303. doi: 10.1103/PhysRevE.93. 012303.
    NEWMAN M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(1): 25-31. doi:10.1038/ nphys2162.
    SCHAEFFER S E. Graph clustering[J]. Computer Science Review, 2007, 1(1): 27-64. doi: 10.1016/j.cosrev.2007.05.001.
    MALLIAROS F D and VAZIRGIANNIS M. Clustering and community detection in directed networks: A survey[J]. Physics Reports, 2013, 533(4): 95-142. doi: 10.1016/j.physrep. 2013.08.002.
    CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111.
    LI Ming, DENG Youjin, and WANG Binghong. Clique percolation in random graphs[J]. Physical Review E, 2015, 92(4): 042116. doi: 10.1103/PhysRevE.92.042116.
    LEE C, REID F, FCDAID A, et al. Detecting highly overlapping community structure by greedy clique expansion [C]. Proceeding of 4th SNA-KDD Workshop on Social Network Mining and Analysis, Washington DC, USA, 2010: 33-42.
    AFSARMANESH N and MAGNANI M. Finding overlapping communities in multiplex networks[OL]. https://arxiv.org/ abs/1602.03746.2016.
    YANG B and LIU J. Discovering global network communities based on local centralities[J]. ACM Transactions on the Web, 2008, 2(1): 1-32. doi: 10.1145/1326561.1326570.
    NIKOLAEV A G, RAZIB R, and KUCHERIYA A. On efficient use of entropy centrality for social network analysis and community detection[J]. Social Networks, 2015, 40: 154-162. doi: 10.1016/j.socnet.2014.10.002.
    NASCIMENTO M C V and CARVALHO A C. Spectral methods for graph clustering-A survey[J]. European Journal of Operational Research, 2011, 211(2): 221-231. doi: 10.1016/ j.ejor.2010.08.012.
    YANG J and LESKOVEC J. Defining and evaluating network communities based on ground-truth[J]. Knowledge and Information Systems, 2015, 42(1): 181-213. doi: 10.1007/ s10115-013-0693-z.
    XIANG Ju, HU Tao, ZHANG Yan, et al. Local modularity for community detection in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, (443): 451-459. doi: 10.1016/j.physa.2015.09.093.
    BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, (10): P10008.
    GOMEZ D, RODRIGUEZ J T, YANEZ J, et al. A new modularity measure for fuzzy community detection problems based on overlap and grouping functions[J]. Approximate Reasoning, 2016, 74: 88-107. doi: 10.1016/j.ijar. 2016.03.003.
    AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi: 10.1038/nature09182.
    DING Z, ZHANG X, SUN D, et al. Overlapping community detection based on network decomposition[J]. Scientific Reports, 2016, 6: 24115. doi: 10.1038/srep24115.
    HUANG Lan, WANG Guishen, WANG Yan, et al. A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection[J]. International Journal of Modern Physics B, 2016, 30(24): 1650167. doi: 10.1142/S0217979216501678.
    NEWMAN M E J and GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
    PAN Y, LI D H, LIU J G, et al. Detecting community structure in complex networks via node similarity[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(14): 2849-2857. doi: 10.1016/j.physa. 2010.03.006.
    PAPADOPOULOS F, KITSAK M, SERRANO M A, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540. doi: 10.1038/nature11459.
    RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2658-2663. doi: 10.1073/ pnas.0400054101.
    XIE Jierui, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: the state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): Article No. 43. doi: 10.1145/2501654.2501657.
    XU Rui and WUNSCH D. Survey of clustering alogrithms[J]. IEEE Transactions on Neural Networks, 2005, 3(16): 645-678. doi: 10.1109/TNN.2005.845141.
    陈水利, 李敬功, 王向公. 模糊集理论及其应用[M]. 北京: 科学出版社, 2005: 1-448.
    CHEN Shuili, LI Jinggong, and WANG Xianggong. Fuzzy Set Theory and Its Application[M]. Beijing: Science Press, 2005: 1-448.
    ZADEH L A. Toward a generalized theory of uncertainty (GTU)-an outline[J]. Information Sciences, 2005, 172(1): 1-40.
    BARALDI A and BLONDA P. A survey of fuzzy clustering algorithms for pattern recognition I[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(6): 778-785. doi: 10.1109/3477.809032.
    DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics-Theory and Experiment, 2005, (9): P09008.
    LANCICHINETTI A, FORTUNATO S, and RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4): 046110. doi: 10.1103/PhysRevE. 78.046110.
    PONS P and LATAPY M. Computing communities in large networks using random walks[C]. Proceeding of 20th International Symposium on Computer and Information Sciences, Turkey, 2005: 284-293. doi: 10.1007/11569596_31.
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. doi: 10.1073/ pnas.0706851105.
  • 加载中
计量
  • 文章访问数:  1544
  • HTML全文浏览量:  248
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回