高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格基约减的扩频通信多址干扰抑制算法

鲍亚川 蔚保国

鲍亚川, 蔚保国. 基于格基约减的扩频通信多址干扰抑制算法[J]. 电子与信息学报, 2017, 39(5): 1164-1169. doi: 10.11999/JEIT161104
引用本文: 鲍亚川, 蔚保国. 基于格基约减的扩频通信多址干扰抑制算法[J]. 电子与信息学报, 2017, 39(5): 1164-1169. doi: 10.11999/JEIT161104
BAO Yachuan, YU Baoguo. Lattice Reduction Aided Multiple Access Interference Cancellation Algorithm of Spread Spectrum Communication[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1164-1169. doi: 10.11999/JEIT161104
Citation: BAO Yachuan, YU Baoguo. Lattice Reduction Aided Multiple Access Interference Cancellation Algorithm of Spread Spectrum Communication[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1164-1169. doi: 10.11999/JEIT161104

基于格基约减的扩频通信多址干扰抑制算法

doi: 10.11999/JEIT161104
基金项目: 

国家自然科学基金(91638203),国家重点研发计划(2016YFB0502102)

Lattice Reduction Aided Multiple Access Interference Cancellation Algorithm of Spread Spectrum Communication

Funds: 

The National Natural Science Foundation of China (91638203), The National Key Research and Development Program (2016YFB0502102)

  • 摘要: 在链路资源受限条件下的扩频通信应用中,多址干扰是限制系统多用户服务能力和通信质量的主要因素。该文针对多址干扰消除问题,首次将格基约减理论应用到扩频通信多址干扰消除中,提出基于格基约减辅助的多用户检测算法,通过格基约减变换实现对信号间互相关矩阵的正交性优化,使多用户检测算法性能得到改进,以较低的运算复杂度实现了逼近最大似然算法的检测性能。该算法在对抗强远近效应方面表现出优异性能,不同于传统多用户检测算法在恶劣多址环境下检测性能的严重退化,该算法能够保持对最大似然检测算法性能的逼近,可以使扩频通信系统的传输可靠性、多用户服务能力以及环境适应性得到显著增强。
  • ABDELAAL R, ELSAYED K F, and ISMAIL M. Optimized joint power and resource allocation for coordinated multi-point transmission for multi-user LTE-Advanced systems[J]. Wireless Personal Communications, 2015, 83(4): 1-22. doi: 10.1007/s11277-015-2543-7.
    BOTELLA C, ERO G, and DIEGO M. Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation[J]. Telecommunication Systems, 2016, 61(3): 543-557. doi: 10.1007/s11235-015-0011-z.
    HOU Y, LI M, and YUAN X. Cooperative interference mitigation for heterogeneous Multi-Hop wireless networks coexistence[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5328-5340. doi: 10.1109/TWC. 2016.2555953.
    ZHOU Qi and MA Xiaoli. Receiver designs for differential UWB systems with multiple access interference[J]. IEEE Transactions on Communications, 2014, 62(1): 126-134. doi: 10.1109/ICUWB.2011.6058828.
    ARNAU J, DEVILLERS B, MOSQUERA C, et al. Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures[J]. EURASIP Journal on Wireless Communications Networking, 2012: 132. doi: 10.1186/ 1687-1499-2012-132.
    KECHRIOTIES G I and MANOLAKOS E S. Hopfield neural network implementation of the optimal CDMA multiuser detector[J]. IEEE Transactions on Communications, 1996, 44(4): 496-507. doi: 10.1109/72.478397.
    史双宁, 尚勇, 梁庆林. 一种新的线性多用户检测器[J]. 电子学报, 2007, 35(3): 426-429. doi: 10.3321/j.issn:0372-2112. 2007.03.008.
    SHI Shuangning, SHANG Yong, and LIANG Qinglin. A novel linear multi-user detector[J]. Acta Electronica Sinica, 2007, 35(3): 426-429. doi: 10.3321/j.issn:0372-2112.2007.03.008.
    YU Y, LI J, and WANG Z. Blind multiuser detection in MC-CDMA: Schmidt-orthogonalization and subspace tracking kalman filtering[C]. 3rd International Conference on Communications and Mobile Computing, Qingdao, 2011: 375-380. doi: 10.1109/CMC.2011.50.
    XIE Z, SHORT R T, and RUSHFORTH C K. A family of suboptimum detectors for coherent multiuser communications[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(4): 683-690. doi: 10.1109/49.54464.
    ZHENG W, LI J, LUO Y, et al. Multi-user interference pre-cancellation for downlink signals of multi-beam satellite system[C]. International Conference on Consumer Electronics, Communications and Networks, Xianning, 2013: 415-418. doi: 10.1109/CECNet.2013.6703358.
    BAO Yachuan and YU Baoguo. A MAI cancellation algorithm with near ML performance[C]. 2015 IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, 2015: 196-200. doi: 10.1109/ ICCSN.2015.7296153.
    BREMNER M R. Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications[M]. Boca Raton, FL, USA, CRC Press, Inc., 2011: 55-62.
    DIAS S M and VIEIRA N J. Concept lattices reduction: Definition, analysis and classification[J]. Expert Systems with Applications, 2015, 42(20): 7084-7097. doi: 10.1016/j.eswa. 2015.04.044.
    LAMACCHIA B A. Basis reduction algorithms and subset sum problems[D]. [Master dissertation], Massachusetts Inst Technology, 1991.
    LENSTRA A K, LENSTRA H W, and LOVASZ L. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261(4): 515-534. doi: 10.1007/BF01457454.
    NGUYEN P Q and STERN J. Lattice reduction in cryptology: An update[C]. 4th International Symposium on Algorithmic Number Theory, Netherlands, 2000: 85-112. doi: 10.1007/10722028_4.
    SCHNORR C and EUCHNER M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems[J]. Mathematical Programming, 2006, 66(1-3): 68-85. doi: 10.1007/bf01581144.
  • 加载中
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  110
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回