高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意循环神经网络模型的雷达高分辨率距离像目标识别

徐彬 陈渤 刘宏伟 金林

徐彬, 陈渤, 刘宏伟, 金林. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
引用本文: 徐彬, 陈渤, 刘宏伟, 金林. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
Citation: XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034

基于注意循环神经网络模型的雷达高分辨率距离像目标识别

doi: 10.11999/JEIT161034
基金项目: 

国家杰出青年科学基金(61525105),国家自然科学基金(61201292, 61322103, 61372132),全国优秀博士学位论文作者专项资金(FANEDD-201156)

Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition

Funds: 

The National Science Fund for Distinguished Young Scholars (61525105), The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Program for New Century Excellent Talents in University (FANEDD-201156)

  • 摘要: 针对雷达高分辨率距离像(HRRP)数据的识别问题,该文利用HRRP生成的时序特性,提出一种基于循环神经网络的注意模型。该模型利用具有记忆功能的循环神经网络对时域数据进行编码,并根据HRRP中不同距离单元所映射的隐层对目标识别的重要性,自适应地赋予隐层不同的权值系数,并根据隐层特征编码特征进行HRRP目标识别。该模型利用了隐藏在HRRP数据内部的目标结构信息,提高了特征的区分度。实测数据的实验结果表明,该方法可以有效地进行识别,在样本存在一定余度数据和样本偏移的情况下,都能准确地找出目标支撑区域。
  • 张英军, 白向辉. 雷达自动目标识别中的HRRP特征提取研究[J]. 系统工程与电子技术, 2007, 29(12): 2047-2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
    ZHANG Junying and BAI Xianghui. Study of the HRRP feature extraction in radar automatic target recognition[J]. Systems Engineering and Electronics, 2007, 29(12): 2047- 2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
    梁海涛, 张学礼, 童创明, 等. 基于小波分解与方位角平均HRRP的SVM目标识别方法[J]. 数据采集与处理, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
    LIANG Haitao, ZHANG Xueli, TONG Chuangming, et al. SVM target identification method based on wavelet decomposition and azimuth average HRRP[J]. Journal of Data Acquisition Processing, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
    DU Lan, LIU Hongwei, BAO Zheng, et al. Radar automatic target recognition using complex high-resolution range profiles[J]. IET Radar, Sonar Navigation, 2007, 1(1): 18-26. doi: 10.1049/iet-rsn:20050119.
    FENG B, DU L, LIU H W, et al. Radar HRRP target recognition based on K-SVD algorithm[C]. IEEE CIE International Conference on Radar, Chengdu, 2011: 642-645.
    潘勉, 王鹏辉, 杜兰, 等. 基于TSB-HMM模型的雷达高分辨距离像目标识别方法[J]. 电子与信息学报, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146.2012.01190.
    PAN Mian, WANG Penghui, DU Lan, et al. Radar HRRP target recognition based on truncated stick-breaking hidden Markov model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146. 2012.01190.
    PAN Mian, DU Lan, WANG Penghui, et al. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-17. doi: 10.1109/CIE-Radar.2011.6159624.
    JI S H, LIAO X J, and CARIN L. Adaptive multi-aspect target classification and detection with hidden Markov models[C]. International Conference on Acoustics, Speech and Signal Processing, Montreal, 2004: 125-129.
    GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-8.
    ZAREMBA W and SUTSKEVER I. Recurrent neural network regularization[C]. International Conference on Learning Representations, San Diego, 2015: 1-8.
    SRIVASTAVE N, MANSIMOV E, and SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-9.
    LI J W, LUONG M T, and JURAFSKY D. A hierarchical neural autoencoder for paragraphs and documents[C]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015: 1106-1115.
    CHEN J X, YANG L, ZHANG Y Z, et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]. 29th Conference on Neural Information Processing Systems, Barcelona, 2016: 1-9.
    ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
    CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]. 27th Conference on Natural Language Processing Systems, Montreal, 2015: 1-19.
    SU B and LU S J. Accurate scene text recognition based on recurrent neural network[C]. 12th Asian Conference on Computer Vision, Singapore, 2015: 35-48.
  • 加载中
计量
  • 文章访问数:  2166
  • HTML全文浏览量:  266
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-25
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回