高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的SAR图像目标检测算法

杜兰 刘彬 王燕 刘宏伟 代慧

杜兰, 刘彬, 王燕, 刘宏伟, 代慧. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032
引用本文: 杜兰, 刘彬, 王燕, 刘宏伟, 代慧. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032
DU Lan, LIU Bin, WANG Yan, LIU Hongwei, DAI Hui. Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032
Citation: DU Lan, LIU Bin, WANG Yan, LIU Hongwei, DAI Hui. Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032

基于卷积神经网络的SAR图像目标检测算法

doi: 10.11999/JEIT161032
基金项目: 

国家自然科学基金(61271024, 61322103, 61525105),高等学校博士学科点专项科研基金博导类基金(20130203110013),陕西省自然科学基金(2015JZ016)

Target Detection Method Based on Convolutional Neural Network for SAR Image

Funds: 

The National Natural Science Foundation of China (61271024, 61322103, 61525105), The Foundation for Doctoral Supervisor of China (20130203110013), The Natural Science Foundation of Shaanxi Province (2015JZ016)

  • 摘要: 该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过四步训练法得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。
  • XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xian, China, 2009: 506-509.
    LENG X, JI K, YANG K, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536-1540. doi: 10.1109 /LGRS.2015.2412174.
    JI Y, ZHANG J, MENG J, et al. A new CFAR ship target detection method in SAR imagery[J]. Acta Oceanologica Sinica, 2010, 29(1): 12-16.
    ELDHUSET K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 1010-1019. doi: 10.1109/36.508418.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097-1105.
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 1-9.
    ZHANG X, ZOU J, MING X, et al. Efficient and accurate approximations of nonlinear convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts, USA, 2015: 1984-1992.
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 770-778.
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. European Conference on Computer Vision. Springer International Publishing, Zurich, Swizterland, 2014: 818-833.
    GOODFELLOW I J, WARDE Farley D, MIRZA M, et al. Maxout networks[J]. International Conference on Machine Learning, 2013, 28(3): 1319-1327.
    HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 1026-1034.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014: 580-587.
    GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448.
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Advances in Neural Information Processing Systems, Montral, Canada, 2015: 91-99.
    IOFFE S and SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, Lille, France, 2015: 448-456.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 3431-3440.
    GAO G, LIU L, ZHAO L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS.2008.2006504.
  • 加载中
计量
  • 文章访问数:  2383
  • HTML全文浏览量:  308
  • PDF下载量:  981
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-24
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回