高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Level-II数据和模糊逻辑推理的气象雷达风电场杂波检测与识别方法

何炜琨 郭双双 王晓亮 吴仁彪

何炜琨, 郭双双, 王晓亮, 吴仁彪. 基于Level-II数据和模糊逻辑推理的气象雷达风电场杂波检测与识别方法[J]. 电子与信息学报, 2016, 38(12): 3252-3260. doi: 10.11999/JEIT161031
引用本文: 何炜琨, 郭双双, 王晓亮, 吴仁彪. 基于Level-II数据和模糊逻辑推理的气象雷达风电场杂波检测与识别方法[J]. 电子与信息学报, 2016, 38(12): 3252-3260. doi: 10.11999/JEIT161031
HE Weikun, GUO Shuangshuang, WANG Xiaoliang, WU Renbiao. Weather Radar Wind Farms Clutters Detection and Identification Method Based on Level-II Data and Fuzzy Logic Inference[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3252-3260. doi: 10.11999/JEIT161031
Citation: HE Weikun, GUO Shuangshuang, WANG Xiaoliang, WU Renbiao. Weather Radar Wind Farms Clutters Detection and Identification Method Based on Level-II Data and Fuzzy Logic Inference[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3252-3260. doi: 10.11999/JEIT161031

基于Level-II数据和模糊逻辑推理的气象雷达风电场杂波检测与识别方法

doi: 10.11999/JEIT161031
基金项目: 

国家自然科学基金委员会与中国民航局联合资助项目(U1533110, 61571422),中国民用航空局空中交通管理局科技计划项目,中央高校基金(3122015D005)

Weather Radar Wind Farms Clutters Detection and Identification Method Based on Level-II Data and Fuzzy Logic Inference

Funds: 

The National Natural Science Foundation Committee and the Civil Aviation Administration of China Jointly Funded Program (U1533110, 61571422), The Science and Technology Program of Air Traffic Management Bureau of Civil Aviation Administration of China, The Central College Fund Program (3122015D005)

  • 摘要: 风电场杂波具有强散射性和由于其叶片旋转导致的频谱展宽特性,其雷达回波很难用传统的杂波滤波器滤除,进而导致气象目标探测过程中的误检测与误识别,这是影响新一代气象雷达探测性能的一个重要因素。该文通过分析风电场杂波区别于气象目标的回波特性,基于气象雷达二次产品(Level-II)实测数据选取某些特征参量,通过构造特征量的概率分布直方图和1维值域分布确定用于识别风电场杂波的各个特征量的隶属度函数,并设置相应的逻辑规则,利用模糊逻辑推理系统(FIS)实现风电场杂波的自适应检测与识别。通过采集几组典型的Level-II数据对所提方法进行测试与验证,均较为准确地识别出存在于气象雷达视野内的风电场杂波,实验结果证明了该文算法的可靠性。
  • NORIN L. A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data[J]. Atmospheric Measurement Techniques, 2015, 8(2): 593-609. doi: 10.5194/amtd-7-8743-2014.
    KERANEN R, ALKU L C, PETTAZZI A, et al. Weather radar and abundant wind farmingImpacts on data quality and mitigation by Doppler dual-polarization[C]. The 8th European Conference on Radar in Meteorology and Hydrology, Finland, 2014: 1-18.
    KARABAYIR O, YUCEDAG S M, COSKUN A F, et al. Wind turbine signal modelling approach for pulse Doppler radars and applications[J]. IET Radar, Sonar Navigation, 2015, 9(3): 276-284. doi: 10.1049/iet-rsn.2014.0094.
    KRASNOV O A and YAROVOY A G. Polarimetric micro- Doppler characterization of wind turbines[C]. The 10th European Conference on Antennas and Propagation (EuCAP), Netherlands, 2016: 1-5. doi: 10.1109/EuCAP. 2016.7481496.
    GALLARDO-HERNANDO B, PEREZ-MARTINEZ F, and AGUADO-ENCABO F. Wind turbine clutter detection in scanning weather radar tasks[C]. The 6th European Conference on Radar in Meteorology and Hydrology, Spain 2010: 1-6.
    HOOD K, TORRES S, and PALMER R. Automatic detection of wind turbine clutter for weather radars[J]. Journal of Atmospheric Oceanic Technology, 2010, 27(11): 1868-1880. doi: 10.1175/2010JTECHA1437.1.
    CHEONG B L, PALMER R, and TORRES S. Automatic wind turbine identification using level-II data[C]. 2011 IEEE RadarCon (RADAR), USA, 2011: 271-275. doi: 10.1109/ RADAR.2011.5960542.
    RZEWUSKI S, KULPA K, BACZYK M K, et al. Wind farm detection using weather radar[C]. 2015 European Radar Conference (EuRAD), Poland, 2015: 189-192. doi: 10.1109/ EuRAD.2015.7346269.
    ISOM B M, PALMER R D, SECREST G S, et al. Detailed observations of wind turbine clutter with scanning weather radars[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(5): 894-910. doi: 10.1175/2008JTECHA1136.1.
    GREVING G and MALKOMES M. Weather radar and wind turbines-theoretical and numerical analysis of the shadowing effects and mitigation concepts[C]. Proceedings of the 5th Europen Radar in Meteorology and Hydrology Conference, Germany, China, 2008: 1-5.
    ZHANG S, MISHRA Y, and SHAHIDEHPOUR M. Fuzzy- logic based frequency controller for wind farms augmented with energy storage systems[J]. IEEE Transactions on Power Systems, 2015: 1-9. doi: 10.1109/TPWRS.2015.2432113.
    王旭, 何建新, 谢承华. 基于模糊逻辑技术在时域自动识别雷达杂波[C]. 全国信号处理与应用学术会议, 南宁, 2008: 247-251.
    WANG Xu, HE Jianxin, and XIE Chenghua. Identifing clutter echoes of weather radar in time domain automatically based on a fuzzy logic technique[C]. The Special Issue of the National Signal Processing and Application Academic Meeting, Nanning, China, 2008: 247-251.
    陈艳, 李柏, 何建新, 等. 在天气雷达信号处理器中用IQ信号消减地物杂波[J]. 气象科技, 2015, 43(4): 569-575. doi: 10.3969/j.issn.1671-6345.2015.04.002.
    CHEN Yan, LI Bai, HE Jianxin, et al. Reduce the ground clutters by IQ in weather radar signal processor[J]. Meteorological Science and Technology, 2015, 43(4): 569-575. doi: 10.3969/j.issn.1671-6345.2015.04.002.
    VOGT R J, REED J R, and CRUM T. Impacts of wind farms on WSR-88D operations and policy considerations[C]. The 23rd Conference on IIPS, Oklahoma, USA, 2014: 1-7.
    陈国斌, 彭黎丽, 唐佳. UWB雷达抗多普勒模糊技术研究[J]. 现代电子技术, 2015(1): 12-14. doi: 10.3969/j.issn.1004-373X. 2015.01.004.
    CHEN Guobin, PENG Lili, and TANG Jia. Method to resolve Doppler ambiguity for UWB radar[J]. Modern Electronics Technique, 2015(1): 12-14. doi: 10.3969/j.issn. 1004-373X.2015.01.004.
  • 加载中
计量
  • 文章访问数:  1386
  • HTML全文浏览量:  156
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-16
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回