杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501. doi: 10.3969/J.issn.1001-0548.2016.04. 001.
|
YANG J Y. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501. doi: 10.3969/J.issn.1001-0548. 2016.04.001.
|
曾涛. 双基地合成孔径雷达发展现状与趋势分析[J]. 雷达学报, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093.
|
ZENG T. Bistatic SAR: State of the art and development trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10. 3724/SP.J.1300.2012.20093.
|
孟自强, 李亚超, 邢孟道, 等. 基于斜视等效的弹载双基前视SAR相位空变校正方法[J]. 电子与信息学报, 2016, 38(3): 613-621. doi: 10.11999/JEIT150782.
|
MENG Ziqiang, LI Yachao, XING Mengdao, et al. Phase space-variance correction method for missile-borne bistatic forward-looking SAR based on equivalent range equation[J]. Journal of Electronics Information Technology, 2016, 38(3): 613-621. doi: 10.11999/JEIT150782.
|
LI Z Y, WU J J, HUANG Y L, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277-3291. doi: 10.1109/TGRS.2016.2514494.
|
CHEN S, YUAN Y, ZHANG S N, et al. A new imaging algorithm for forward-looking missile-borne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1543-1552. doi: 10.1109/JSTARS.2015.2507260.
|
ZHANG H, DENG Y K, WANG R, et al. Spaceborne/ stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5203-5216. doi: 10.1109/TGRS.2016.2558294.
|
WANG R, WANG W, SHAO Y F, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842-849. doi: 10.1109/TGRS.2015.2467176.
|
ZENG T, HU C, WU L X, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5019-5030. doi: 10.1109/TGRS.2013.2276048.
|
QIU X L, HU D H, and DING C B. An improved NLCS algorithm with capability analysis for one-stationary BiSAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3179-3186. doi: 10.1109/TGRS.2008.921569.
|
WONG F H and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 946-953. doi: 10.1109/36.921412.
|
WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493-2505. doi: 10.1109/TGRS.2008. 917599.
|
LI D, LIAO G S, WANG W, et al. Extended azimuth nonlinear chirp scaling algorithm for bistatic SAR processing in high-resolution highly squinted mode[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1134-1138. doi: 10.1109/LGRS.2013.2288292.
|
WANG W, LIAO G S, LI D, et al. Focus improvement of squint bistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 229-233. doi: 10.1109/LGRS.2013.2254106.
|
LI Z Y, WU J J, YI Q Y, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000-1016. doi: 10.1109/TAES.2014.130539.
|
NEO Y L, WONG F H, and CUMMING I G. A two- dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93-96. doi: 10.1109/LGRS.2006.885862.
|