高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于椭圆模型与改进NLCS的一站固定式大基线双站SAR成像算法

钟华 胡剑 张松 孙闽红

钟华, 胡剑, 张松, 孙闽红. 基于椭圆模型与改进NLCS的一站固定式大基线双站SAR成像算法[J]. 电子与信息学报, 2016, 38(12): 3174-3181. doi: 10.11999/JEIT161016
引用本文: 钟华, 胡剑, 张松, 孙闽红. 基于椭圆模型与改进NLCS的一站固定式大基线双站SAR成像算法[J]. 电子与信息学报, 2016, 38(12): 3174-3181. doi: 10.11999/JEIT161016
ZHONG Hua, HU Jian, ZHANG Song, SUN Minhong. Improved NLCS Algorithm Based on Ellipse Model for One-stationary Bistatic SAR with Large Baseline[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3174-3181. doi: 10.11999/JEIT161016
Citation: ZHONG Hua, HU Jian, ZHANG Song, SUN Minhong. Improved NLCS Algorithm Based on Ellipse Model for One-stationary Bistatic SAR with Large Baseline[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3174-3181. doi: 10.11999/JEIT161016

基于椭圆模型与改进NLCS的一站固定式大基线双站SAR成像算法

doi: 10.11999/JEIT161016
基金项目: 

国家自然科学基金(61301248, 61271214),中国航天科技创新基金

Improved NLCS Algorithm Based on Ellipse Model for One-stationary Bistatic SAR with Large Baseline

Funds: 

The National Natural Science Foundation of China (61301248, 61271214), Chinese Innovation Foundation of Aerospace Science and Technology

  • 摘要: 在一站固定式双站SAR成像处理中,该文针对距离-方位2维空变描述不够准确导致成像性能迅速下降的问题,提出一种新的椭圆模型精确描述一站固定式大基线双站SAR的距离-方位空变特性,并基于此推导了改进的非线性调频变标(NLCS)成像算法。在距离向,首先利用相位去斜完成距离去走动和多普勒中心矫正,接着对剩余距离单元徙动和距离方位高次耦合项进行了去除处理。在方位向,根据一站固定式双站SAR的2维空变特性,提出了一种用于描述回波距离-方位空变特性的椭圆模型,基于该模型对空变的回波方位调频率进行了分析,并重新推导NLCS算法的方位变标函数和方位压缩系数。理论分析与仿真结果证明,所提出的模型不仅揭示了一站固定式大基线双站SAR数据的2维空变特性,而且对回波的距离-方位空变给出了更精确的解析式描述,使得基于该模型改进的NLCS算法可以获得更好的成像处理效果。
  • 杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501. doi: 10.3969/J.issn.1001-0548.2016.04. 001.
    YANG J Y. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501. doi: 10.3969/J.issn.1001-0548. 2016.04.001.
    曾涛. 双基地合成孔径雷达发展现状与趋势分析[J]. 雷达学报, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093.
    ZENG T. Bistatic SAR: State of the art and development trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10. 3724/SP.J.1300.2012.20093.
    孟自强, 李亚超, 邢孟道, 等. 基于斜视等效的弹载双基前视SAR相位空变校正方法[J]. 电子与信息学报, 2016, 38(3): 613-621. doi: 10.11999/JEIT150782.
    MENG Ziqiang, LI Yachao, XING Mengdao, et al. Phase space-variance correction method for missile-borne bistatic forward-looking SAR based on equivalent range equation[J]. Journal of Electronics Information Technology, 2016, 38(3): 613-621. doi: 10.11999/JEIT150782.
    LI Z Y, WU J J, HUANG Y L, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277-3291. doi: 10.1109/TGRS.2016.2514494.
    CHEN S, YUAN Y, ZHANG S N, et al. A new imaging algorithm for forward-looking missile-borne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1543-1552. doi: 10.1109/JSTARS.2015.2507260.
    ZHANG H, DENG Y K, WANG R, et al. Spaceborne/ stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5203-5216. doi: 10.1109/TGRS.2016.2558294.
    WANG R, WANG W, SHAO Y F, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842-849. doi: 10.1109/TGRS.2015.2467176.
    ZENG T, HU C, WU L X, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5019-5030. doi: 10.1109/TGRS.2013.2276048.
    QIU X L, HU D H, and DING C B. An improved NLCS algorithm with capability analysis for one-stationary BiSAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3179-3186. doi: 10.1109/TGRS.2008.921569.
    WONG F H and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 946-953. doi: 10.1109/36.921412.
    WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493-2505. doi: 10.1109/TGRS.2008. 917599.
    LI D, LIAO G S, WANG W, et al. Extended azimuth nonlinear chirp scaling algorithm for bistatic SAR processing in high-resolution highly squinted mode[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1134-1138. doi: 10.1109/LGRS.2013.2288292.
    WANG W, LIAO G S, LI D, et al. Focus improvement of squint bistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 229-233. doi: 10.1109/LGRS.2013.2254106.
    LI Z Y, WU J J, YI Q Y, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000-1016. doi: 10.1109/TAES.2014.130539.
    NEO Y L, WONG F H, and CUMMING I G. A two- dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93-96. doi: 10.1109/LGRS.2006.885862.
  • 加载中
计量
  • 文章访问数:  1282
  • HTML全文浏览量:  101
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-11-25
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回