高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的干涉相位图局部自适应滤波方法

薛海伟 冯大政

薛海伟, 冯大政. 一种新的干涉相位图局部自适应滤波方法[J]. 电子与信息学报, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013
引用本文: 薛海伟, 冯大政. 一种新的干涉相位图局部自适应滤波方法[J]. 电子与信息学报, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013
XUE Haiwei, FENG Dazheng. New Locally Adaptive Method for InSAR Phase Noise Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013
Citation: XUE Haiwei, FENG Dazheng. New Locally Adaptive Method for InSAR Phase Noise Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013

一种新的干涉相位图局部自适应滤波方法

doi: 10.11999/JEIT161013
基金项目: 

国家自然科学基金(61271293)

New Locally Adaptive Method for InSAR Phase Noise Filtering

Funds: 

The National Natural Science Foundation of China (61271293)

  • 摘要: 为了有效提高对InSAR干涉相位噪声的抑制性能并充分保持干涉相位图细节信息,该文提出一种基于局部地形相位补偿和各向异性高斯滤波函数(AGF)的自适应复相位滤波方法。该方法首先利用局部频率估计方法补偿地形相位,以便于消除局部地形相位对滤波窗口内干涉相位的不利影响。然后,构造了尺度和方向自适应的AGF,并对同分布样本进行局部加权的方向滤波。这里,AGF尺度随相干系数等级自适应变化:在低相干区域,采用的大尺度AGF能够充分地抑制相位噪声;在高相干区域,采用的小尺度AGF能更好地保持相位细节信息。AGF方向根据最大加权相干积累准则确定,以选取同分布的滤波样本估计中心像素相位值。实验结果表明,与多种滤波方法相比,该文方法在减少干涉相位图残点和保持条纹边缘等方面均具有更好的性能。
  • ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382. doi: 10.1109/5.838084.
    LIN X, LI F F, MENG D D, et al. Nonlocal SAR interferometric phase filtering through higher order singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 806-810. doi: 10.1109/LGRS. 2014.2362952.
    CAO M Y, LI S Q, WANG R, et al. Interferometric phase denoising by median patch-based locally optimal wiener filter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1730-1734. doi: 10.1109/LGRS.2015.2422788.
    LI H Y, SONG H J, WANG R, et al. A modification to the complex-valued MRF modeling filter of interferometric SAR phase[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 681-685. doi: 10.1109/LGRS.2014.2357449.
    LI J W, LI Z F, BAO Z, et al. Noise filtering of high- resolution interferograms over vegetation and urban areas with a refined nonlocal filter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 77-81. doi: 10.1109/LGRS.2014. 2326462.
    SONG R, GUO H D, LIU G, et al. Improved Goldstein SAR interferogram filter based on adaptive-neighborhood technique[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 140-144. doi: 10.1109/LGRS.2014.2329498.
    SEYMOUR M S and CUMMING I G. Maximum likelihood estimation for SAR interferometry[C]. International Geoscience and Remote Sensing Symposium, 1994, 4: 2272-2275. doi: 10.1109/IGARSS.1994.399711.
    GOLDSTEIN R M and WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 40354038. doi: 10.1029/1998GL900033.
    BARAN I, STEWART M P, KAMPES B M, et al. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2114-2118. doi: 10.1109/TGRS.2003.817212.
    FU S H, LONG X J, YANG X, et al. Directionally adaptive filter for synthetic aperture radar interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 552-559. doi: 10.1109/TGRS.2012.22. 2911.
    TROUVE E, NICOLAS J M, and MAITRE H. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963-1972. doi: 10.1109/36.729368.
    CAI B, LIANG D N, and DONG Z. A new adaptive multiresolution noise-filtering approach for SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 266-270. doi: 10.1109/ LGRS.2008.915942.
    LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465. doi: 10.1109/36. 718849.
    WU N, FENG D Z, and LI J X. A locally adaptive filter of interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 73-77. doi: 10.1109/ LGRS.2005.856703.
    CHAO C F, CHEN K S, and LEE J S. Refined filtering of interferometric phase from InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5315-5323. doi: 10.1109/TGRS.2012.2234467.
    SUO Z Y, ZHANG J Q, LI M, et al. Improved InSAR phase noise filter in frequency domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1185-1195. doi: 10.1109/TGRS.2015.2476355.
    WANG Q S, HUANG H F, YU A X, et al. An efficient and adaptive approach for noise filtering of SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1140-1144. doi: 10.1109/LGRS.2011. 2158289.
    李锦伟, 李真芳, 刘艳阳, 等. 一种相干系数加权的最优干涉相位滤波[J]. 西安电子科技大学学报, 2014, 41(2): 25-31. doi: 10.3969/j.issn.1001-2400.2014.02.005.
    LI J W, LI Z F, LIU Y Y, et al. Coherence-weighted optimum interferometric phase filtering method[J]. Journal of Xidian University, 2014, 41(2): 25-31. doi: 10.3969/ j.issn.1001-2400.2014.02.005.
    SUO Z Y, LI Z F, and BAO Z. A new strategy to estimate local fringe frequencies for InSAR phase noise reduction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 771-775. doi: 10.1109/LGRS.2010.2047935.
    SHUI P L and ZHANG W C. Noise-robust edge detector combing isotropic and anisotropic Gaussian kernels[J]. Pattern Recognition, 2012, 45(2): 806-820. doi: 10.1016/ j.patcog.2011.07.020.
  • 加载中
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  115
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-11-25
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回