高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应阈值分割与局部背景线索结合的显著性检测

唐红梅 吴士婧 郭迎春 裴亚男

唐红梅, 吴士婧, 郭迎春, 裴亚男. 自适应阈值分割与局部背景线索结合的显著性检测[J]. 电子与信息学报, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984
引用本文: 唐红梅, 吴士婧, 郭迎春, 裴亚男. 自适应阈值分割与局部背景线索结合的显著性检测[J]. 电子与信息学报, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984
TANG Hongmei, WU Shijing, GUO Yingchun, PEI Yanan. Saliency Detection Based on Adaptive Threshold Segmentation and Local Background Clues[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984
Citation: TANG Hongmei, WU Shijing, GUO Yingchun, PEI Yanan. Saliency Detection Based on Adaptive Threshold Segmentation and Local Background Clues[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1592-1598. doi: 10.11999/JEIT160984

自适应阈值分割与局部背景线索结合的显著性检测

doi: 10.11999/JEIT160984
基金项目: 

天津市科技计划项目(14RCGFGX00846, 15ZCZDNC 00130),河北省自然科学基金面上项目(F2015202239)

Saliency Detection Based on Adaptive Threshold Segmentation and Local Background Clues

Funds: 

Tianjin Science and Technology Project (14RCGFGX00846, 15ZCZDNC00130), Project of Natural Science Foundation of Hebei Province (F2015202239)

  • 摘要: 为了提高显著性算法对不同类图像的适用性以及结果的完整性,该文提出一种基于自适应阈值合并的分割过程与新的背景选择方法相结合的显著性检测算法。在分割过程中,生成相邻区块的RGB以及LAB共六通道融合的颜色差值序列,采用区块面积参数的反比例模型生成自适应阈值与颜色差值序列进行对比合并。在背景选择过程中,根据局部区域背景-主体-背景的相对位置关系线索,得到背景区域,再对结果进行边缘优化。该算法与其它算法相比得到的显著图不需要外接其他阈值算法即生成二值图,自适应阈值合并能排除复杂环境中的物体细节,专注于同等级大小物体的显著性对比。
  • ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    罗会兰, 万成涛, 孔繁胜. 基于 KL散度及多尺度融合的显著性区域检测算法[J]. 电子与信息学报, 2016, 38(7): 1594-1601. doi: 10.11999/JEIT151145.
    LUO Huilan, WAN Chengtao, and KONG Fansheng. Salient region detection algorithm via KL divergence and multi-scale merging[J]. Journal of Electronics Information Technology, 2016, 38(7): 1594-1601. doi: 10.11999/JEIT151145.
    WU Pohung, CHEN Chienchi, DING Jianjiun, et al. Salient region detection improved by principle component analysis and boundary information[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3614-3624. doi: 10.1109/TIP.2013. 2266099.
    SHETH C and VENKATESH R. Object saliency using a background prior[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1931-1935. doi: 10.1109/ICASSP.2016.7472013.
    LI G B and YU Y Z. Visual saliency based on multiscale deep features[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 5455-5463. doi: 10.1109/CVPR.2015.7299184.
    ZHANG Wei, BORJI A, WANG Zhou, et al. The application of visual saliency models in objective image quality assessment: A statistical evaluation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1266-1278. doi: 10.1109/TNNLS.2015.2461603.
    毕笃彦, 库涛, 查宇飞, 等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921.
    BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive object tracking based on color names histogram[J].Journal of Electronics Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921.
    XIANG D and ZHONG B J. Scale-space saliency detection in combined color space[C]. Chinese Automation Congress, Wuhan, China, 2015: 726-731. doi: 10.1109/CAC.2015. 7382593.
    ACHANTA R, APPU S, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281. doi: 10.1109/TPAMI.2012.120.
    TONG Na, LU Huchuan, ZHANG Lihe, et al. Saliency detection with multi-scale superpixels[J]. IEEE Signal Processing Letters, 2014, 21(9): 1035-1039. doi: 10.1109/LSP. 2014.2323407.
    郑瑞连, 钟宝江, 徐东升. 基于L曲率的尺度空间形状分析技术[J]. 南京大学学报, 2012, 48(2): 172-181. doi: 10.13232 /j.cnki.jnju.2012.02.007.
    ZHENG Ruilian, ZHONG Baojiang, and XU Dongsheng. Scale space shape analysis technique based on L curvature[J]. Journal of Nanjing University, 2012, 48(2): 172-181. doi: 10.13232/j.cnki.jnju.2012.02.007.
    NGUYEN H T, WORRING M, and BOOMGAARD R V D. Watersnakes: Energy-driven watershed segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(3): 330-342. doi: 10.1109/TPAMI.2003. 1182096.
    朱玉琨. 结合局部特征与空间关系的多物体检测算法研究[D]. [硕士论文], 上海交通大学, 2014: 3-76.
    ZHU Yukun. Research on multi object detection algorithm based on local feature and spatial relation[D]. [Master dissertation], Shanghai Jiao Tong University, 2014: 3-76.
    CHENG M M, ZHANG G X, MITRAN J, et al. Global contrast based salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011: 409-416. doi: 10.1109/TPAMI.2014. 2345401.
    ZELNIK-MANOR L, TAL A, and MARGOLIN R. What makes a patch distinct?[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 1139-1146. doi: 10.1109/CVPR.2013.151.
    CHENG M M, WARRELL L, LIN W Y, et al. Efficient salient region detection with soft image abstraction[C]. IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1529-1536. doi: 10.1109/ICCV.2013.193.
  • 加载中
计量
  • 文章访问数:  1281
  • HTML全文浏览量:  173
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 修回日期:  2017-02-16
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回