高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维扩展特征与深度学习的微博短文本情感分析

孙晓 彭晓琪 胡敏 任福继

孙晓, 彭晓琪, 胡敏, 任福继. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975
引用本文: 孙晓, 彭晓琪, 胡敏, 任福继. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975
SUN Xiao, PENG Xiaoqi, HU Min, REN Fuji. Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975
Citation: SUN Xiao, PENG Xiaoqi, HU Min, REN Fuji. Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975

基于多维扩展特征与深度学习的微博短文本情感分析

doi: 10.11999/JEIT160975
基金项目: 

国家自然科学基金(61432004),模式识别国家重点实验室开放课题(NLPR)(201407345),安徽省自然科学基金(1508085 QF119),中国博士后科学基金(2015M580532)

Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis

Funds: 

The National Natural Science Foundation of China (61432004), The Open Project Program of the National Laboratory of Pattern Recognition (NLPR) (201407345), The Natural Science Foundation of Anhui Province (1508085QF119), The China Postdoctoral Science Foundation (2015M580532)

  • 摘要: 该文提出了一种基于深度信念网络(DBN)和多维扩展特征的模型,实现对中文微博短文本的情感分类。为降低传统文本分类方法在处理微博短文时特征稀疏的影响,引入社交关系网络作为扩展特征,依据评论者和博主之间的社交关系,提取相关评论扩展原始微博,将扩展后的多维特征作为深度信念网络的输入。通过叠加多层玻尔兹曼机(RBM)构建DBN模型底层网络结构,多层玻尔兹曼机可以对原始输入抽象并获得数据的深层语义特征。在多个RBM层上叠加一层分类玻尔兹曼机(ClassRBM),实现最终情感分类。实验结果表明,通过调整模型参数和网络结构,构建的深度学习模型在情感分类中能够获得比SVM和NB等浅层分类系统更优的结果,另外,实验证明使用扩展多维特征方法可提高短文本情感分类的性能。
  • 刘斌, 黄铁军, 程军, 等. 一种新的基于统计的自动文本分类方法[J]. 中文信息学报, 2002, 16(6): 18-24.
    LIU Bin, HUANG Tiejun, CHENG Jun, et al. The automatic text classification method based on statistics[J]. Journal of Chinese Information Processing, 2002, 16(6): 18-24. doi: 10.3969/j.issn.1003-0077.2002.06.003.
    覃晓, 元昌安, 彭昱忠, 等. 基于词典和遗传算法的文本特征获取方法[J]. 计算机工程与设计, 2008, 29(21): 5651-5654.
    QIN Xiao, YUAN Chang,an, PENG Yuzhong, et al. Based on the dictionary method and genetic algorithm for text feature extraction[J]. Computer Engineering and Design, 2008, 29(21): 5651-5654.
    胡侯立, 魏维, 胡蒙娜. 深度学习算法的原理及应用[J]. 信息技术, 2015(2): 175-177. doi: 10.13274/j.cnki.hdzj.2015.02. 045.
    HU Houli, WEI Wei, and HU Mengna. The principle and application of deep learning algorithm[J]. Information Technology, 2015(2): 175-177. doi: 10.13274/j.cnki.hdzj.2015. 02.045.
    王荣波, 谌志群, 周建政, 等. 基于Wikipedia的短文本语义相关度计算方法[J]. 计算机应用与软件, 2015, 32(1): 82-85. doi: 10.3969/j.issn.1000-386x.2015.01.021.
    WANG Rongbo, SHEN Zhiqun, ZHOU Jianzheng, et al. Short text semantic relatedness calculation method based on Wikipedia[J]. Computer Applications and Software, 2015, 32(1): 82-85. doi: 10.3969/j.issn.1000-386x.2015.01.021.
    GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. Proceedings of the 28 International Conference on Machine Learning, Bellevue, WA, USA, 2011: 513-520.
    SAIF H, HE Y, ALANI H, et al. On stopwords, filtering and data sparsity for sentiment analysis of twitter[C]. The International Conference on Language Resources and Evaluation, Reykjavik, Iceland, 2014: 810-817.
    XIA R, XU F, YU J, et al. Polarity shift detection, elimination and ensemble: A three-stage model for document- level sentiment analysis[J]. Information Processing Management, 2015, 52(1): 36-45. doi: 10.1016/j.ipm.2015.04. 003.
    PEISENIEKS J, SKADIN R, and PEISENIEKS J. Uses of machine translation in the sentiment analysis of tweets[C]. Human Language Technologies-the Baltic Perspective, Kaunas, Lithuania, 2014: 126-131. doi: 10.3233/978-1-61499- 442-8-126.
    SUBRAHMANIAN and REFORGIATO D. AVA: Adjective- verb-adverb combinations for sentiment analysis[J]. IEEE Intelligent Systems, 2008, 23(4): 43-50. doi: 10.1109/MIS. 2008.57.
    NARENDRA B, SAI K U, RAJESH G, et al. Sentiment analysis on movie reviews: A comparative study of machine learning algorithms and open source technologies[J]. International Journal of Intelligent Systems Technologies and Applications, 2016, 8(8): 66-70. doi: 10.5815/ijisa.2016.08.08.
    WU F and HUANG Y. Collaborative multi-domain sentiment classification[C]. IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 2015: 459-468. doi: 10.1109/ICDM.2015.68.
    ZHENG W L, ZHU J Y, PENG Y, et al. EEG-based emotion classification using deep belief networks[C]. IEEE International Conference on Multimedia and Expo, Chengdu, China, 2014: 1-6. doi: 10.1109/ICME.2014.6890166.
    PSOMAKELIS E, TSERPES K, ANAGNOSTOPOULOS D, et al. Comparing methods for twitter sentiment analysis[C]. International Conference on Knowledge Discovery and Information Retrieval. Rome, Italy, 2015: 225-232. doi: 10.5220/0005075302250232.
    BRAVO-MARQUEZ F, MENDOZA M, and POBLETE B, Combining strengths, emotions and polarities for boosting twitter sentiment analysis[C]. Workshop on Issues of Sentiment Discovery and Opinion Mining, New York, NY, USA, 2013: 1-9. doi: 10.1145/2502069.2502071.
    XU K, FENG Y, HUANG S, et al. Semantic relation classification via convolutional neural networks with simple negative sampling[J]. Computer Science, 2015, 71(7): 941-950. doi: 10.18653/v1/D15-1062.
    SANTOS C N D and GATTIT M. Deep convolutional neural networks for sentiment analysis of short texts[C]. International Conference on Computational Linguistics, Dublin, Ireland, 2014: 69-78.
    ZHAI S and ZHANG Z. Semisupervised autoencoder for sentiment analysis[J]. Computer Science, 2015, 64(8): 1570-1582. doi: 10.1080/03081087.2015.1107020.
    SOCHER R, HUVAL B, MANNING D, et al. Semantic compositionality through recursive matrix-vector spaces[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Jeju Island, Korea, 2012: 1201-1211.
    MIDHUN M E, NAIR S R, PRABHAKAR V T N, et al. Deep model for classification of hyperspectral image using restricted Boltzmann machine[C]. International Conference on Interdisciplinary Advances in Applied Computing, New York, NY, USA, 2014: 1-7. doi: 10.1145/2660859.2660946.
    WANG Y, ZHAO S, QU D, et al. Using conditional restricted Boltzmann machines for spectral envelope modeling in speech bandwidth extension[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 5930-5934. doi: 10.1109/ICASSP.2016.7472815.
    CHEN F, WU Y, BU Y, et al. Spectral classification using restricted Boltzmann machine[J]. Publications of the Astronomical Society of Australia, 2014, 31(31): 386-406. doi: 10.1017/pasa.2013.38.
    TRIPATHY A, AGRAWAL A, and RATH S K. Classification of sentiment reviews using n-gram machine learning approach[J]. Expert Systems with Applications, 2016, 57: 117-126. doi: 10.1016/j.eswa.2016.03.028.
  • 加载中
计量
  • 文章访问数:  1737
  • HTML全文浏览量:  228
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-28
  • 修回日期:  2017-05-17
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回