高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低信噪比条件下宽带欠定信号高精度DOA估计

冯明月 何明浩 徐璟 李少东

冯明月, 何明浩, 徐璟, 李少东. 低信噪比条件下宽带欠定信号高精度DOA估计[J]. 电子与信息学报, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921
引用本文: 冯明月, 何明浩, 徐璟, 李少东. 低信噪比条件下宽带欠定信号高精度DOA估计[J]. 电子与信息学报, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921
FENG Mingyue, HE Minghao, XU Jing, LI Shaodong. High Accuracy DOA Estimation Under Low SNR Conditionfor Wideband Underdetermined Signals[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921
Citation: FENG Mingyue, HE Minghao, XU Jing, LI Shaodong. High Accuracy DOA Estimation Under Low SNR Conditionfor Wideband Underdetermined Signals[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921

低信噪比条件下宽带欠定信号高精度DOA估计

doi: 10.11999/JEIT160921
基金项目: 

国家自然科学基金(61401504),军内计划科研项目(2015XXX),湖北省自然科学基金(2016CFB288)

High Accuracy DOA Estimation Under Low SNR Conditionfor Wideband Underdetermined Signals

Funds: 

The National Natural Science Foundation of China (61401504), The Military Plan of Scientific Research Project (2015XXX), The Natural Science Foundation of Hubei Province (2016CFB288)

  • 摘要: 为提高低信噪比条件下宽带欠定信号DOA估计精度,该文提出基于网格失配迭代最小化稀疏学习的宽带DOA估计方法。该方法首先对频域协方差矩阵进行矢量化处理实现虚拟阵列扩展,将欠定信号转换为超定信号。其次利用线性变换滤除含有噪声项的虚拟阵元,并对协方差估计误差进行了白化处理,抑制了信号中的干扰项。最后建立了包含不同频点联合稀疏参数和网格失配参数的贝叶斯层次架构,推导了联合稀疏参数、网格失配参数的最小稀疏表达式并进行了迭代学习。较传统方法,该方法不依赖任何先验信息,更好地抑制了虚拟阵元中的噪声和干扰,降低了网格失配对DOA估计的影响,在低信噪比条件下具有更高的DOA估计精度和分辨率。仿真实验验证了该方法的有效性。
  • ZHANG Yong, HE Peiyu, and WANG Haijiang. Wideband coherent sources localization based on a two-node distributed sensor networks[J]. Signal Processing, 2016, 126(9): 103-110. doi: 10.1016/j.sigpro.2015.10.024.
    ZHEN Jiaqi and WANG Zhifang. DOA estimation method for wideband signals by block sparse reconstruction[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 20-27. doi: 10.1109/JSEE.2016.00003.
    朱立为, 汪亚, 王翔, 等. 空时频域中欠定混合条件下的波达方向估计[J]. 国防科技大学学报, 2015, 37(5): 149-154. doi: 10.11887/j.cn.201505023.
    ZHU Liwei, WANG Ya, WANG Xiang, et al. Underdetermined direction of arrival estimation based on spatial time-frequency distributions[J]. Journal of National University of Defense Technology, 2015, 37(5): 149-154. doi: 10.11887/j.cn.201505023.
    HAN Keyong and NEHORAI Arye. Wideband Gaussian source processing using a linear nested array[J]. IEEE Signal Processing Letters, 2013, 20(11): 1110-1113. doi: 10.1109/LSP.2013.2281514.
    SHEN Zhibo, DONG Chunxi, DONG Yangyang, et al. Broadband DOA estimation based on nested arrays[J]. International Journal of Antennas and Propagation, 2015, 2015(3): 1-7. doi: 10.1155/2015/974634.
    SHEN Qing, LIU Wei, CUI Wei, et al. Low-complexity direction-of-arrival estimation based on wideband co-prime arrays[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2015, 23(9): 1445-1453. doi: 10.1109/TASLP.2015.2436214.
    CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182-2196. doi: 10.1109/TSP.2011.2112650.
    HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435-439. doi: 10.1109/LSP.2014.2358084.
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
    PAN Yujian, TAI Ning, and YUAN Naichang. Wideband DOA estimation via sparse Bayesian learning over a Khatri-Rao dictionary[J]. Radioengineering, 2015, 24(2): 552-557. doi: 10.13164/re.2015.0552.
    熊坤来, 刘章孟, 柳征, 等. 基于EM算法的宽带信号DOA估计及盲分离[J]. 电子学报, 2015, 43(10): 2028-2033. doi: 10.3969/j.issn.03722112.2015.10.022.
    XIONG Kunlai, LIU Zhangmeng, LIU Zheng, et al. Broadband DOA estimation and blind source separation based on EM algorithm[J]. Acta Electronica Sinica, 2015, 43(10): 2028-2033. doi: 10.3969/j.issn.03722112.2015.10.022.
    XU Luzhou, ZHAO Kexin, LI Jian, et al. Wideband source localization using sparse learning via iterative minimization[J]. Signal Processing, 2013, 93(12): 3504-3514. doi: 10.1016/j.sigpro.2013.04.005.
    TAN Xing, ROBERTS W, LI Jian, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088-1101. doi: 10.1109/TSP.2010.2096218.
    邓佳欣, 廖桂生, 杨志伟, 等. 基于虚拟孔径扩展的子带信息融合宽带DOA估计[J]. 系统工程与电子技术, 2016, 38(2): 245-250. doi: 10.3969/j.issn.1001-506X.2016.02.01.
    DENG Jiaxin, LIAO Guisheng, YANG Zhiwei, et al. Subband information fusion for wideband DOA estimation based on virtual array[J]. Systems Engineering and Electronics, 2016, 38(2): 245-250. doi: 10.3969/j.issn.1001- 506X.2016.02.01.
    QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377-1390. doi: 10.1109/TSP.2015.2393838.
    VAIDYANATHAN P P and PAL Piya. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. doi: 10.1109/TSP. 2010.2089682.
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-Grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378.
    ZHAO Yonghong, ZHANG Linrang, and GU Yabin. Array covariance matrix-based sparse Bayesian learning for off-grid direction-of-arrival estimation[J]. Electronics Letters, 2016, 52(5): 401-402. doi: 10.1049/el.2015.2931.
  • 加载中
计量
  • 文章访问数:  1278
  • HTML全文浏览量:  158
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 修回日期:  2017-01-24
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回