高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面变压器在空间行波管中的应用

赵斌 王刚 王东蕾

赵斌, 王刚, 王东蕾. 平面变压器在空间行波管中的应用[J]. 电子与信息学报, 2017, 39(6): 1487-1492. doi: 10.11999/JEIT160911
引用本文: 赵斌, 王刚, 王东蕾. 平面变压器在空间行波管中的应用[J]. 电子与信息学报, 2017, 39(6): 1487-1492. doi: 10.11999/JEIT160911
ZHAO Bin, WANG Gang, WANG Donglei. Application of Planar Transformers for Space Travelling-wave Tube Amplifiers[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1487-1492. doi: 10.11999/JEIT160911
Citation: ZHAO Bin, WANG Gang, WANG Donglei. Application of Planar Transformers for Space Travelling-wave Tube Amplifiers[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1487-1492. doi: 10.11999/JEIT160911

平面变压器在空间行波管中的应用

doi: 10.11999/JEIT160911

Application of Planar Transformers for Space Travelling-wave Tube Amplifiers

  • 摘要: 平面变压器具有小体积、高功率密度以及热特性好的特点,在低压领域得到了广泛应用。该文研究了将平面变压器应用于行波管电源中,从而达到减小电源体积,提高电源功率密度的目的。结合行波管电源常用的LCLC谐振拓扑,采用部分交错绕组结构设计了一种平面变压器,并进行了电路仿真和实际测试,仿真结果与实测结果一致。采用该平面变压器的LCLC谐振变换器,输入电压为40 V,输出电压为4800 V,输出功率为295 W,开关频率为500 kHz。仿真结果与实验结果均表明,采用平面变压器,可以提高开关频率,缩小电源体积,提高功率密度,从而降低整个行波管放大器的体积和重量。
  • 胡银富, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4): 350-360. doi: 10.12000/JR16078.
    HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350-360. doi: 10. 12000/JR16078.
    ZUBORAJ M, NAHAR N K, and VOLAKIS J L. An S-band high power traveling wave tube for RADAR application[C]. Radio Science Meeting (Joint with AP-S Symposium), Memphis, USA, 2014, 81-81. doi: 10.1109/USNC-URSI.2014. 6955463.
    LIU Yawei and SU Xiao-bao. High power and efficiency power combining of space TWTAs with waveguide magic-T for satellite communication[C]. Vacuum Electronics Conference (IVEC), Beijing, 2015: 1-2. doi: 10.1109/IVEC. 2015.7223941.
    刘洁, 胡波雄, 王刚, 等. 一种适用于Ku波段行波管放大器的预失真线性化器[J]. 电子与信息学报, 2014, 36(10): 2515-2520. doi: 10.3724/SP.J.1146.2013.01820.
    LIU Jie, HU Boxiong, WANG Gang, et al. A predistortion linearizer for Ku-band traveling-wave tube amplifier[J]. Journal of Electronics Information Technology, 2014, 36(10): 2515-2520. doi: 10.3724/SP.J.1146.2013.01820.
    LIU Jie, ZHANG Huadong, and LI Zengliang. A novel two-branch predistortion linearizer of Ku-band TWTA in communication applications[C]. IET International Radar Conference, Hangzhou, China, 2015: 1-8. doi: 10.1049/cp. 2015.1172.
    BLANES J M, GARRIGOS A, GUTIERREZ R, et al. Evaluation of gallium nitride transistors in electronic power conditioners for TWTAs[C]. IEEE Aerospace Conference, MT USA, 2015: 1-8. doi: 10.1109/AERO.2015.7119140.
    PEQUET E, DEPORTE P, FAYT P, et al. ESA qualified EPC for telecommunication satellites TWTA[C]. Vacuum Electronics Conference, Monterey CA, 2000: 1-2. doi: 10.1109 /OVE:EC.2000.847524.
    BARBI I and GULES R. Isolated DC-DC converters with high-output voltage for TWTA telecommunication satellite applications[J]. IEEE Transactions on Power Electronics, 2003, 18(4): 975-984. doi: 10.1109/TPEL.2003.813762.
    OUYANG Z and ANDERSON M A E. Overview of planar magnetic technologyfundamental properties[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4888-4900. doi: 10.1109/TPEL.2013.2283263.
    OUYANG Z, ZHANG Z, THOMSEN O C, et al. Planar- Integrated Magnetics (PIM) module in hybrid bidirectional DC-DC converter for fuel cell application[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3254-3264. doi: 10.1109/TPEL.2011.2129598.
    ZHANG J, HURLEY W G, and WOLFLE W H. Optimized design of LLC resonant converters incorporating planar magnetics[C]. Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, 2013: 1683-1688. doi: 10.1109/APEC.2013.6520523.
    ZHAO Bin, WANG Gang, HURLEYW G, et al. An interleaved structure for a high-voltage planar transformer for a travelling-wave tube[C]. International Power Electronics and Motion Control Conference, Hefei, 2016: 3695-3701. doi: 10.1109/IPEMC.2016.7512887.
    HABIBINIA D and FEYZI M R. Optimal winding design of a pulse transformer considering parasitic capacitance effect to reach best rise time and overshoot[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(3): 1350-1359. doi: 10.1109/TDEI.2014.6832283.
    FU Dianbo, WANG S, KONG Pengju, et al. Novel techniques to suppress the common-mode EMI noise caused by transformer parasitic capacitances in DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 4968-4977. doi: 10.1109/TIE.2012.2224071.
    BIELA J and KOLAR J W. Using transformer parasitics for resonant convertersA review of the calculation of the stray capacitance of transformers[J]. IEEE Transactions on Industry Applications, 2008, 44(1): 223-233. doi: 10.1109/ TIA.2007.912722.
    OUYANG Z, ZHANG J, and HURLEY W G. Calculation of leakage inductance for high-frequency transformers[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5769-5775. doi: 10.1109/TPEL.2014.2382175.
    ZHANG J, OUYANG Z, DUFFY M, et al. Leakage inductance calculation for planar transformers with a magnetic shunt[J]. IEEE Transactions on Industry Application, 2014, 50(6): 4107-4112. doi: 10.1109/TIA.2014. 2322140.
    BAHMANI M A and THIRINGER T. Accurate evaluation of leakage inductance in high-frequency transformers using an improved frequency-dependent expression[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5738-5745. doi: 10.1109/TPEL.2014.2371057.
  • 加载中
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  109
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-09
  • 修回日期:  2017-02-22
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回