高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度空间表征的生物启发目标指引导航模型

李伟龙 吴德伟 卢虎 杜佳 周阳

李伟龙, 吴德伟, 卢虎, 杜佳, 周阳. 基于多尺度空间表征的生物启发目标指引导航模型[J]. 电子与信息学报, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
引用本文: 李伟龙, 吴德伟, 卢虎, 杜佳, 周阳. 基于多尺度空间表征的生物启发目标指引导航模型[J]. 电子与信息学报, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
Citation: LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892

基于多尺度空间表征的生物启发目标指引导航模型

doi: 10.11999/JEIT160892
基金项目: 

国家自然科学基金(61273048, 61473308, 61603409)

Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation

Funds: 

The National Natural Science Foundation of China (61273048, 61473308, 61603409)

  • 摘要: 为实现运行体空间认知和自主导航,借鉴生物导航机理,该文提出基于多尺度空间表征的生物启发目标指引导航模型。首先构建不同尺度位置细胞图编码空间环境,采用高斯模型模拟位置细胞放电率,并将其作为Q学习的状态输入,然后采用模拟退火方法完成行为选择,通过多次探索学习使运行体能够正确规划出一条从起始点到目标点的最短路径。仿真结果表明,该方法用于目标指引导航是可行的,相对于单尺度位置细胞空间认知模型,该方法不但符合多尺度空间表征的生物学依据,而且学习速度更快。在存在障碍物的环境中,能够顺利完成目标指引导航任务,并且当障碍物发生变化时具有较好的适应性。
  • ALEJANDRA B, GONZALO T, MARTIN L, et al. Learning spatial localization: From rat studies to computational models of the hippocampus[J]. Spatial Cognition and Computation: An Interdisciplinary Journal, 2015, 15: 27-59. doi: 10.1080/ 13875868.2014.961602.
    FABIAN C and BURGESS N. The Cognitive architecture of spatial navigation: Hippocampal and striatal contributions[J]. Neuron, 2015, 88(1): 64-77. doi: 10.1016/j.neuron.2015.09. 021.
    RAYMOND P K and EDMUND T R. A computational theory of hippocampal function, and tests of the theory: New developments[J]. Neuroscience and Biobehavioral Reviews, 2015, 48(1): 92-147. doi: 10.1016/j.neubiorev.2014.11.009.
    TOLMAN E C. Cognitive maps in rats and men[J]. Psychological Review, 1948, 55(1): 189-208. doi: 10.1037/ h0061626.
    OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map[J]. Brain Research, 1971, 34(1): 171-175. doi: 10.1016/0006-8993(71)90358-1.
    OKEEFE J and BURGESS N. Geometric determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. doi: 10.1038/381425a0.
    BJERKNES T, LANGSTON R, KRUGE I, et al. Coherence among head direction cells before eye opening in rat pups[J]. Current Biology, 2015, 25(1): 103-108. doi: 10.1016/j.cub. 2014.11.009.
    GIOCOMO L M, STENSOLA T, BONNEVIE T, et al. Topography of head direction cells in medial entorhinal cortex[J]. Current Biology, 2014, 24(3): 252-262. doi: 10.1016 /j.cub.2013.12.002.
    HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. doi: 10.1038/nature03721.
    DANIEL B, CASWELL B, DANIEL M, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507-520. doi: 10.1016/ j.neuron.2015.07.006.
    SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhinal cortex[J]. Science, 2009, 322(5909): 1865-1868. doi: 10.1126/ science.1166466.
    EMILIO K, JAMES E C, MOSER M B, et al. Speed cells in the medial entorhinal cortex[J]. Nature, 2015, 523(7561): 419-424. doi: 10.1038/nature14622.
    TAVARES R M, MENDELSOHN A, GROSSMAN Y, et al. A map for social navigation in the human brain[J]. Neuron, 2015, 87(1): 231-243. doi: 10.1016/j.neuron.2015.06.011.
    IOANNIS K, KONSTANTINOS C, ANTONIOS G, et al. Robot navigation via spatial and temporal coherent semantic maps[J]. Engineering Applications of Artificial Intelligence, 2016, 48(1): 173-187. doi: 10.1016/j.engappai.2015.11.004.
    曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39(1): 212-222. doi: 10.11897/SP.J.1016.2016. 00212.
    ZENG Yi, LIU Chenglin, and TAN Tieniu. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computer, 2016, 39(1): 212-222. doi: 10.11897/SP. J.1016.2016.00212.
    李伟龙, 吴德伟, 周阳, 等. 基于生物位置细胞放电机理的空间位置表征方法[J]. 电子与信息学报, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    LI Weilong, WU Dewei, Zhou Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics Information Technology, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    SPIERS H J and BARRY C. Neural systems supporting navigation[J]. Current Opinion in Behavioral Sciences, 2015, 1(1): 47-55. doi: 10.1016/j.cobeha.2014.08.005.
    ERDEM U M, MILFORD M J, and HASSELMO M E. A hierarchical model of goal directed navigation selects trajectories in a visual environment[J]. Neurobiology of Learning and Memory, 2015, 117(1): 109-121. doi: 10.1016/ j.nlm.2014.07.003.
    GEVA-SAGIV M, LAS L, YOVEL Y, et al. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2): 94-108. doi: 10.1038/nrn3888.
    KEINATH A T, WANG M E, WANN E G, et al. Precise spatial coding is preserved along the longitudinal hippocampal axis[J]. Hippocampus, 2014, 24(12): 1533-1548. doi: 10.1002/hipo.22333.
    LONG L L, BUNCE J G, and CHROBAK J J. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus[J]. Frontiers in Systems Neuroscience, 2015, 37(9): 1-14. doi: 10.3389/fnsys.2015. 00037.
    ROBITSEK R J, WHITE J A, and EICHENBAUM H. Place cell activation predicts subsequent memory[J]. Behavioural Brain Research, 2013, 254(4): 65-72. doi: 10.1016/j.bbr.2012. 12.034.
    KONAR A, CHAKRABORTY I G, SINGH S J, et al. A deterministic improved q-learning for path planning of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 43(5): 1141-1153. doi: 10.1109/ TSMCA.2012.2227719.
    CUPERLIER N, QUOY M, and GAUSSIER P. Neurobiologically inspired mobile robot navigation and planning[J]. Frontiers in Neurorobotics, 2007, 1(3): 1-15. doi: 10.3389/neuro.12.003.2007.
    GIOVANNI P, MATTHIJS A A, MEER V D, et al. Internally generated sequences in learning and executing goal-directed behavior[J]. Trends in Cognitive Sciences, 2014, 18(12): 647-657. doi: 10.1016/j.tics.2014.06.011.
  • 加载中
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  140
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-02
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回