刘源, 王洪先, 纠博, 等. 米波MIMO雷达低空目标波达方向估计新方法[J]. 电子与信息学报, 2016, 38(3): 622-628. doi: 10.11999/JEIT150555.
|
LIU Yuan, WANG Hongxian, JIU Bo, et al. A new method for DOA estimation for VHF MIMO radar in low-angle tracking environment[J]. Journal of Electronics Information Technology, 2016, 38(3): 622-628. doi: 10.11999/ JEIT150555.
|
郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013.
|
ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics Information Technology, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013.
|
KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/79. 526899.
|
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
|
ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276.
|
SHAN Tiejun, WAX M, and KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811. doi: 10.1109/TASSP. 1985.1164649.
|
KUNG S, LO C, and FOKA R. A Toeplitz approximation approach to coherent source direction finding[C] IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 1986: 193-196.
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
|
HE Z Q, LIU Q H, JIN L N, et al. Low complexity method for DOA estimation using array covariance matrix sparse representation[J]. Electronics Letters, 2013, 49(3): 228-230. doi: 10.1049/el.2012.4032.
|
WEI Cui, TONG Qian, and JING Tian. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290. doi: 10.1049/el.2014.4519.
|
LIU Hongqing, ZHAO Liuming, LI Yong, et al. A sparse- based approach for DOA estimation and array calibration in uniform linear array[J]. IEEE Sensors Journal, 2016, 16(15): 6018-6027. doi: 10.1109/JSEN. 2016.2577712.
|
WANG Yi, YANG Minglei, CHEN Baixiao, et al. Improved DOA estimation based on real-valued array covariance using sparse Bayesian learning[J]. Signal Processing, 2016, 129: 183-189. doi: 10.1016/j.sigpro.2016.06.002.
|
WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
|
YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378.
|
ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
|
LIU Zhangmeng, LIU Zheng, FENG Daowang, et al. Direction-of-arrival estimation for coherent sources via sparse Bayesian learning[J]. International Journal of Antennas and Propagation, 2014, (2014): 1-8. doi: 10.1155/2014/959386.
|
TEAGUE C C. Root-MUSIC direction finding applied to multifrequency coastal radar[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1896-1898.
|
FRIEDLANDER B and WEISS A J. Direction finding using spatial smoothing with interpolated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 574-587. doi: 10.1109/7.144583.
|