高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于空域滤波的空间临近相干源角度估计方法

郑轶松 陈伯孝 杨明磊

郑轶松, 陈伯孝, 杨明磊. 一种基于空域滤波的空间临近相干源角度估计方法[J]. 电子与信息学报, 2016, 38(12): 3100-3106. doi: 10.11999/JEIT160882
引用本文: 郑轶松, 陈伯孝, 杨明磊. 一种基于空域滤波的空间临近相干源角度估计方法[J]. 电子与信息学报, 2016, 38(12): 3100-3106. doi: 10.11999/JEIT160882
ZHENG Yisong, CHEN Baixiao, YANG Minglei. Direction of Arrival Estimation Method for Spatially Adjacent Coherent Sources Based on Spatial Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3100-3106. doi: 10.11999/JEIT160882
Citation: ZHENG Yisong, CHEN Baixiao, YANG Minglei. Direction of Arrival Estimation Method for Spatially Adjacent Coherent Sources Based on Spatial Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3100-3106. doi: 10.11999/JEIT160882

一种基于空域滤波的空间临近相干源角度估计方法

doi: 10.11999/JEIT160882
基金项目: 

国家自然科学基金(61571344),上海航天科技创新基金(SAST2015071, SAST2015064)

Direction of Arrival Estimation Method for Spatially Adjacent Coherent Sources Based on Spatial Filtering

Funds: 

The National Natural Science Foundation of China (61571344), The Funds of SAST (SAST2015071, SAST 2015064)

  • 摘要: 相干源常见于存在多径的场景,如何解相干历来是阵列信号处理领域亟待解决的难题之一,特别针对空间临近相干源,其角度估计精度尚有待提高。针对空间临近相干源该文提出一种基于空域滤波的角度估计方法。首先利用空域滤波技术将多个相干源分离,再对滤波分离后的各个信号分别进行角度估计,并通过对滤波器系数和相干源角度的迭代优化提高测角精度。针对非均匀线阵,该方法采用虚拟阵列技术扩展其适用范围。计算机仿真结果表明该方法的测角精度较现有方法更高,信噪比较高时其测角的均方根误差可达克拉美罗界,验证了该方法的有效性和在空间临近相干源场景的优越性。
  • 刘源, 王洪先, 纠博, 等. 米波MIMO雷达低空目标波达方向估计新方法[J]. 电子与信息学报, 2016, 38(3): 622-628. doi: 10.11999/JEIT150555.
    LIU Yuan, WANG Hongxian, JIU Bo, et al. A new method for DOA estimation for VHF MIMO radar in low-angle tracking environment[J]. Journal of Electronics Information Technology, 2016, 38(3): 622-628. doi: 10.11999/ JEIT150555.
    郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013.
    ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics Information Technology, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013.
    KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/79. 526899.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276.
    SHAN Tiejun, WAX M, and KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811. doi: 10.1109/TASSP. 1985.1164649.
    KUNG S, LO C, and FOKA R. A Toeplitz approximation approach to coherent source direction finding[C] IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 1986: 193-196.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    HE Z Q, LIU Q H, JIN L N, et al. Low complexity method for DOA estimation using array covariance matrix sparse representation[J]. Electronics Letters, 2013, 49(3): 228-230. doi: 10.1049/el.2012.4032.
    WEI Cui, TONG Qian, and JING Tian. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290. doi: 10.1049/el.2014.4519.
    LIU Hongqing, ZHAO Liuming, LI Yong, et al. A sparse- based approach for DOA estimation and array calibration in uniform linear array[J]. IEEE Sensors Journal, 2016, 16(15): 6018-6027. doi: 10.1109/JSEN. 2016.2577712.
    WANG Yi, YANG Minglei, CHEN Baixiao, et al. Improved DOA estimation based on real-valued array covariance using sparse Bayesian learning[J]. Signal Processing, 2016, 129: 183-189. doi: 10.1016/j.sigpro.2016.06.002.
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378.
    ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
    LIU Zhangmeng, LIU Zheng, FENG Daowang, et al. Direction-of-arrival estimation for coherent sources via sparse Bayesian learning[J]. International Journal of Antennas and Propagation, 2014, (2014): 1-8. doi: 10.1155/2014/959386.
    TEAGUE C C. Root-MUSIC direction finding applied to multifrequency coastal radar[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1896-1898.
    FRIEDLANDER B and WEISS A J. Direction finding using spatial smoothing with interpolated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 574-587. doi: 10.1109/7.144583.
  • 加载中
计量
  • 文章访问数:  1483
  • HTML全文浏览量:  115
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-11-04
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回