高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于缩短极化码的MLC NAND Flash差错控制技术研究

郭锐 王美洁 王杰

郭锐, 王美洁, 王杰. 基于缩短极化码的MLC NAND Flash差错控制技术研究[J]. 电子与信息学报, 2017, 39(7): 1658-1665. doi: 10.11999/JEIT160864
引用本文: 郭锐, 王美洁, 王杰. 基于缩短极化码的MLC NAND Flash差错控制技术研究[J]. 电子与信息学报, 2017, 39(7): 1658-1665. doi: 10.11999/JEIT160864
GUO Rui, WANG Meijie, WANG Jie. Research on the MLC Nand Flash Error Control Technology Based on Polar Codes[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1658-1665. doi: 10.11999/JEIT160864
Citation: GUO Rui, WANG Meijie, WANG Jie. Research on the MLC Nand Flash Error Control Technology Based on Polar Codes[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1658-1665. doi: 10.11999/JEIT160864

基于缩短极化码的MLC NAND Flash差错控制技术研究

doi: 10.11999/JEIT160864
基金项目: 

浙江省自然科学基金(LY16F010013),浙江省重点科技创新团队基金(2013TD03),国家自然科学基金(61401130)

Research on the MLC Nand Flash Error Control Technology Based on Polar Codes

Funds: 

The Natural Science Foundation of Zhejiang Province (LY16F010013), The Key Science and Technology Innovation Team Foundation of Zhejiang Province (2013TD03), The National Natural Science Foundation of China (61401130)

  • 摘要: 为了提高MLC NAND Flash的抗误码性能,该文提出一种基于优化缩短极化码的MLC NAND Flash差错控制方法。优化缩短极化码通过优化删减图样得到,首先通过比特翻转重排序的方式得到基本删减图样,进而选择具有更低信道容量的冻结比特组成优化删减图样,使得到的删减比特全为冻结比特,可以显著提高删减算法的纠错性能。同时,根据MLC单元错误的不对称性,采用码率自适应的码字对FLASH中MSB和LSB进行不等错误保护。仿真结果表明:当误帧率为10-3时,优化缩短极化码较相同码长的LDPC码和基本缩短极化码分别约有 3.72 ~5.89 dB和1.47~3.49 dB增益;相比基于同一码率的优化缩短极化码方案,不等错误保护的差错控制方案获得约0.25 dB增益。
  • ASLAM C A, GUAN Y L, and CAI K. Dynamic write-level and read-level signal design for MLC NAND flash memory[C]. 2014 9th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), Manchester, 2014: 336-341. doi: 10.1109/CSNDSP.2014. 6923850.
    SUN H, ZHAO W, LU M, et al. Exploiting intracell bit-error characteristics to improve min-sum LDPC decoding for MLC NAND flash-based storage in mobile device[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(8): 2654-2664. doi: 10.1109/TVLSI.2016.2535224.
    ASLAM C A, YONG L G, and CAI K. Optimal read and write signal design for multi-level-cell NAND flash memory[J]. IEEE Transactions on Communications, 2016, 64(4): 1613-1623. doi: 10.1109/TCOMM.2016.2533498.
    HO Kinchu, CHEN Chihlung, and CHANG Hsiechia. A 520k (18900, 17010) array dispersion LDPC decoder architectures for NAND flash memory[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(4): 1293-1304. doi: 10.1109/TVLSI.2015.2464092.
    KIM Daesung and HA Jeongseok. Serial quasi-primitive BC- BCH codes for NAND flash memories[C]. 2016 IEEE International Conference on Communications (ICC), Beijing, 2016: 1-6. doi: 10.1109/ICC.2016.7510725.
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary- input memory less channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009. 2021379.
    ESLAMI A and PISHRO N. A practical approach to polar codes[C]. 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), St. Petersburg, 2011: 16-20. doi: 10.1109/ISIT.2011.6033837.
    SHIN D M, LIM S C, and YANG K. Design of length- compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593-2599. doi: 10.1109/TCOMM.2013.052013. 120543.
    LI Y, ALHUSSIEN H, HARATSCH E F, et al. A study of polar codes for MLC NAND flash memories[C]. 2015 International Conference on Computing, Networking and Communications (ICNC), Garden Grove, CA, 2015: 608-612. doi: 10. 1109/ICCNC.2015.7069414.
    LIU Y, LIU Huaida, JIN Pingui, et al. An adaptive ECC scheme for dynamic protection of NAND flash memories[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 2015: 1052-1055. doi: 10.1109/ICASSP.2015.7178130.
    NIU K, CHEN K, and LIN J R. Beyond turbo codes: Rate- compatible punctured polar codes[C]. 2013 IEEE International Conference on Communications (ICC), Budapest, 2013: 3423-3427. doi: 10.1109/ICC.2013.6655078.
    TARANALLI V, UCHIKAWA H, and SIEGEL P H. Channel models for multi-level cell flash memories based on empirical error analysis[J]. IEEE Transactions on Communications, 2016, 64(8): 3169-3181. doi: 10.1109/TCOMM.2016.2584602.
    LIU Yumin, LIU Huaiting, CHEN Minghan, et al. Byte- reconfigurable LDPC codec design with application to high- performance ECC of NAND flash memory systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(7): 1794-1804. doi: 10.1109/TCSI.2015.2423798.
    MACKAY J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45(2): 399-431. doi: 10.1109/18.748992.
    TAI I and VARDY A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6562-6582. doi: 10.1109/TIT.2013.2272694.
  • 加载中
计量
  • 文章访问数:  1684
  • HTML全文浏览量:  223
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-22
  • 修回日期:  2017-01-12
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回