ASLAM C A, GUAN Y L, and CAI K. Dynamic write-level and read-level signal design for MLC NAND flash memory[C]. 2014 9th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), Manchester, 2014: 336-341. doi: 10.1109/CSNDSP.2014. 6923850.
|
SUN H, ZHAO W, LU M, et al. Exploiting intracell bit-error characteristics to improve min-sum LDPC decoding for MLC NAND flash-based storage in mobile device[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(8): 2654-2664. doi: 10.1109/TVLSI.2016.2535224.
|
ASLAM C A, YONG L G, and CAI K. Optimal read and write signal design for multi-level-cell NAND flash memory[J]. IEEE Transactions on Communications, 2016, 64(4): 1613-1623. doi: 10.1109/TCOMM.2016.2533498.
|
HO Kinchu, CHEN Chihlung, and CHANG Hsiechia. A 520k (18900, 17010) array dispersion LDPC decoder architectures for NAND flash memory[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(4): 1293-1304. doi: 10.1109/TVLSI.2015.2464092.
|
KIM Daesung and HA Jeongseok. Serial quasi-primitive BC- BCH codes for NAND flash memories[C]. 2016 IEEE International Conference on Communications (ICC), Beijing, 2016: 1-6. doi: 10.1109/ICC.2016.7510725.
|
ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary- input memory less channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009. 2021379.
|
ESLAMI A and PISHRO N. A practical approach to polar codes[C]. 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), St. Petersburg, 2011: 16-20. doi: 10.1109/ISIT.2011.6033837.
|
SHIN D M, LIM S C, and YANG K. Design of length- compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593-2599. doi: 10.1109/TCOMM.2013.052013. 120543.
|
LI Y, ALHUSSIEN H, HARATSCH E F, et al. A study of polar codes for MLC NAND flash memories[C]. 2015 International Conference on Computing, Networking and Communications (ICNC), Garden Grove, CA, 2015: 608-612. doi: 10. 1109/ICCNC.2015.7069414.
|
LIU Y, LIU Huaida, JIN Pingui, et al. An adaptive ECC scheme for dynamic protection of NAND flash memories[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 2015: 1052-1055. doi: 10.1109/ICASSP.2015.7178130.
|
NIU K, CHEN K, and LIN J R. Beyond turbo codes: Rate- compatible punctured polar codes[C]. 2013 IEEE International Conference on Communications (ICC), Budapest, 2013: 3423-3427. doi: 10.1109/ICC.2013.6655078.
|
TARANALLI V, UCHIKAWA H, and SIEGEL P H. Channel models for multi-level cell flash memories based on empirical error analysis[J]. IEEE Transactions on Communications, 2016, 64(8): 3169-3181. doi: 10.1109/TCOMM.2016.2584602.
|
LIU Yumin, LIU Huaiting, CHEN Minghan, et al. Byte- reconfigurable LDPC codec design with application to high- performance ECC of NAND flash memory systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(7): 1794-1804. doi: 10.1109/TCSI.2015.2423798.
|
MACKAY J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45(2): 399-431. doi: 10.1109/18.748992.
|
TAI I and VARDY A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6562-6582. doi: 10.1109/TIT.2013.2272694.
|