高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于概率密度函数匹配与分数低阶矩的并行盲均衡算法

马济通 邱天爽 李蓉 夏楠 李景春

马济通, 邱天爽, 李蓉, 夏楠, 李景春. 基于概率密度函数匹配与分数低阶矩的并行盲均衡算法[J]. 电子与信息学报, 2017, 39(7): 1532-1538. doi: 10.11999/JEIT160841
引用本文: 马济通, 邱天爽, 李蓉, 夏楠, 李景春. 基于概率密度函数匹配与分数低阶矩的并行盲均衡算法[J]. 电子与信息学报, 2017, 39(7): 1532-1538. doi: 10.11999/JEIT160841
MA Jitong, QIU Tianshuang, LI Rong, XIA Nan, LI Jingchun. Concurrent Blind Equalization Algorithm Based on Probability Density Function Matching and Fractional Lower Order Moments[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1532-1538. doi: 10.11999/JEIT160841
Citation: MA Jitong, QIU Tianshuang, LI Rong, XIA Nan, LI Jingchun. Concurrent Blind Equalization Algorithm Based on Probability Density Function Matching and Fractional Lower Order Moments[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1532-1538. doi: 10.11999/JEIT160841

基于概率密度函数匹配与分数低阶矩的并行盲均衡算法

doi: 10.11999/JEIT160841
基金项目: 

国家自然科学基金(61671105, 61139001, 61172108, 81241059)

Concurrent Blind Equalization Algorithm Based on Probability Density Function Matching and Fractional Lower Order Moments

Funds: 

The National Natural Science Foundation of China (61671105, 61139001, 61172108, 81241059)

  • 摘要: 为了提高脉冲噪声下盲均衡器的性能,该文提出一种基于概率密度函数匹配与分数低阶矩的并行盲均衡算法。首先采用概率密度函数匹配的思想进行盲均衡,充分利用其收敛速度快的优势。为了解决此均衡过程中引起的相位信息损失以及抑制脉冲噪声能力差的问题,又以并行的方式结合判决信号的分数低阶矩,并以此作为代价函数来共同更新盲均衡器的权向量,进一步提高了算法在脉冲噪声下的收敛速度与收敛精度。仿真实验表明,所提算法在有效解决相位旋转问题的同时较好地抑制了脉冲噪声,此外还具有较快的收敛速度和较小的稳态误差,稳健性较强。
  • LIM J. Mixture filtering approaches to blind equalization based on estimation of time-varying and multi-path channels [J]. Journal of Communications Networks, 2016, 18(1): 8-18. doi: 10.1109/JCN.2016.000004.
    SILVA M T M and ARENAS-GARCIA J. A soft-switching blind equalization scheme via convex combination of adaptive filters[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1171-1182. doi: 10.1109/TSP.2012.2236835.
    YU C and XIE L. On recursive blind equalization in sensor networks[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 662-672. doi: 10.1109/TSP.2014.2376884.
    SCARANO G, PETRONI A, BIAGI M, et al. Second-order statistics driven LMS blind fractionally spaced channel equalization[J]. IEEE Signal Processing Letters, 2017, 24(2): 161-165. doi: 10.1109/LSP.2016.2635034.
    邱天爽, 戚寅哲. 稳定分布噪声下基于粒子滤波的双站伪多普勒定位方法[J]. 通信学报, 2016, 37(1): 28-34. doi: 10.11959 /J.ISSN.1000-436x.2016004.
    QIU Tianshuang and QI Yinzhe. Dual-station pseudo- Doppler localization method based on particle filtering with stable distribution noise[J]. Journal on Communications, 2016, 37(1): 28-34. doi: 10.11959/J.ISSN.1000-436x.2016004.
    LUAN S, QIU T, ZHU Y, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120(4): 503-508. doi: 10. 1016/J.SIGPRO.2015.09.023.
    PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195. doi: 10.1109/TWC.2014.042314.131432.
    RUPI M, TSAKALIDES P, RE E D, et al. Constant modulus blind equalization based on fractional lower-order statistics[J]. Signal Processing, 2004, 84(5): 881-894. doi: 10.1016/J. SIGPRO.2004.01.006.
    TANG Hong, QIU Tianshuang, and LI Ting. Capture properties of the generalized CMA in alpha-stable noise environment[J]. Wireless Personal Communications, 2009, 49(1): 439-442. doi: 10.1007/S11277-008-9560-8.
    LI S and QIU T S. Tracking performance analysis of fractional lower order constant modulus algorithm[J]. Electronics Letters, 2009, 45(11): 545-546. doi: 10.1049/EL. 2009.0561.
    郭莹, 邱天爽, 唐洪,等. 脉冲噪声环境下的恒模盲均衡算法[J]. 通信学报, 2009, 30(4): 35-40. doi: 10.3321/J.ISSN:1000- 436X.2009.04.007.
    GUO Ying, QIU Tianshuang, TANG Hong, et al. Constant modulus algorithm for blind equalization under impulsive noise environments[J]. Journal on Communications, 2009, 30(4): 35-40. doi: 10.3321/J.ISSN:1000-436X.2009.04.007.
    LI Sen, WANG Yan, and LIN Bin. Concurrent blind channel equalization in impulsive noise environments[J]. Chinese Journal of Electronics, 2013, 22(4): 741-746.
    LAZARO M, SANTAMARIA I, ERDOGMUS D, et al. Stochastic blind equalization based on PDF fitting using Parzen estimator[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 696-704. doi: 10.1109/TSP.2004.840767.
    KIM N, BYUN H G, YOU Y H, et al. Blind signal processing for impulsive noise channels[J]. Journal of Communications Networks, 2012, 14(1): 27-33. doi: 10.1109/JCN.2012. 6184548.
    LIU H, LI Y, ZHOU Y, et al. Impulsive noise suppression in the case of frequency estimation by exploring signal sparsity [J]. Digital Signal Processing, 2016, 57(3): 34-45. doi: 10.1016 /J.DSP.2016.06.012.
    郭业才, 龚秀丽, 张艳萍. 基于样条函数Renyi熵的时间分集小波盲均衡算法[J]. 电子与信息学报, 2011, 33(9): 2050-2055. doi: 10.3724/SP.J.1146.2011.00110.
    GUO Yecai, GONG Xiuli, and ZHANG Yanping. Spline function Renyi entropy based tme diversity wavelet blind equalization algorithm[J]. Journal of Elestronics Information Technology, 2011, 33(9): 2050-2055. doi: 10.3724 /SP.J.1146.2011.00110.
    ALNAFFOURI T Y, DAHMAN A A, SOHAIL M S, et al. Low complexity blind equalization for OFDM systems with general constellations[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6395-6407. doi: 10.1109/TSP.2012. 2218808.
  • 加载中
计量
  • 文章访问数:  1653
  • HTML全文浏览量:  349
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 修回日期:  2017-04-18
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回