高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SRAM物理不可克隆函数的高效真随机种子发生器设计

李冰 涂云晶 陈帅 吉建华

李冰, 涂云晶, 陈帅, 吉建华. 基于SRAM物理不可克隆函数的高效真随机种子发生器设计[J]. 电子与信息学报, 2017, 39(6): 1458-1463. doi: 10.11999/JEIT160835
引用本文: 李冰, 涂云晶, 陈帅, 吉建华. 基于SRAM物理不可克隆函数的高效真随机种子发生器设计[J]. 电子与信息学报, 2017, 39(6): 1458-1463. doi: 10.11999/JEIT160835
LI Bing, TU Yunjing, CHEN Shuai, JI Jianhua. Efficient Design of Truly Random Seed Generator Based on SRAM Physical Unclonable Functions[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1458-1463. doi: 10.11999/JEIT160835
Citation: LI Bing, TU Yunjing, CHEN Shuai, JI Jianhua. Efficient Design of Truly Random Seed Generator Based on SRAM Physical Unclonable Functions[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1458-1463. doi: 10.11999/JEIT160835

基于SRAM物理不可克隆函数的高效真随机种子发生器设计

doi: 10.11999/JEIT160835
基金项目: 

国家自然科学基金(61571116)

Efficient Design of Truly Random Seed Generator Based on SRAM Physical Unclonable Functions

Funds: 

The National Natural Science Foundation of China (61571116)

  • 摘要: 该文设计了一种基于SRAM物理不可克隆函数(PUFs)的高效真随机种子发生器。通过将不提供熵值的稳定节点和提供低熵值的噪声节点筛除,只选用能够提供较高熵值的噪声节点来生成满熵种子,大幅降低需要处理的数据量,提高节点数据的处理效率。通过测试SRAM PUFs内部噪声节点的振荡特性,提出筛选出SRAM PUFs内部高熵值的噪声节点的最佳策略,最终基于此策略设计出真随机种子发生器。该设计可以产生128~256 bit长度的满熵的种子且处理的节点数据量只有当前方法的0.5%~4%。生成的种子满足NIST架构的随机数生成器要求,产生的伪随机数全部通过了随机数检测。与现有设计相比,该文提出的真随机种子发生器是一种高效的、适用范围较广的设计。
  • PAPPU R, RECHT B, TAYLOR J, et al. Physical one-way functions[J]. Science, 2002, 297(5589): 2026-2030. doi: 10.1126/science.1074376.
    BARBARESCHI M, BATTISTA E, MAZZEO A, et al. Testing 90 nm microcontroller SRAM PUF quality[C]. IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era, Naples, Italy, 2015: 1-6.
    HOLCOMB D E, BURLESON W P, and FU K. Power-Up SRAM state as an identifying fingerprint and source of true random numbers[J]. IEEE Transactions on Computers, 2008, 58(9): 1198-1210. doi: 10.1109/TC.2008.212.
    XIAO K, RAHMAN M T, FORTE D, et al. Bit selection algorithm suitable for high-volume production of SRAM-PUF[C]. IEEE International Symposium on Hardware-Oriented Security and Trust, Arlington, Virginia, USA, 2014: 101-106.
    LEEST V V D, SLUIS E V D, SCHRIJEN G J, et al. Efficient implementation of true random number generator based on SRAM PUFs[J]. Lecture Notes in Computer Science, 2012, 6805: 300-318. doi: 10.1007/978-3-642-28368-0_20.
    ZHANG J, LIN Y, LYU Y, et al. A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing[J]. IEEE Transactions on Information Forensics Security, 2015, 10(6): 1137-1150. doi: 10.1109/TIFS.2015.2400413.
    DELVAUX J, GU D, SCHELLEKENS D, et al. Helper data algorithms for PUF-based key generation: Overview and analysis[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(6): 889-902. doi: 10.1109/TCAD.2014.2370531.
    KIM H and HONG S. AES Sbox GF(24) inversion functions based PUFs[C]. IEEE International SoC Design Conference (ISOCC), Jeju, South Korea, 2014: 15-16.
    VARCHOLA M, DRUTAROVSKY, M, and FISCHER V. New universal element with integrated PUF and TRNG capability[C]. International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico. 2013: 1-6.
    HUSSAIN S U, MAJZOOBI M, and KOUSHANFAR F. A built-in-self-test scheme for online evaluation of physical unclonable functions and true random number generators[J]. IEEE Transactions on Multi-Scale Computing Systems, 2016, 2(1): 2-16. doi: 10.1109/TMSCS.2016.2519902.
    LI D, LU Z, ZOU X, et al. PUFKEY: A high-security and high-throughput hardware true random number generator for sensor networks[J]. Sensors, 2015, 15(10): 26251-26266. doi: 10.3390/s151026251.
    HERREWEGE V A, VINCENT V D L, SCHALLER A, et al. Secure PRNG seeding on commercial off-the-shelf microcontrollers[C]. International Workshop on Trustworthy Embedded Devices, Berlin, Germany, 2013: 55-64.
    CORTEZ M, DARGAR A, HAMDIOUI S, et al. Modeling SRAM start-up behavior for physical unclonable functions[C]. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Austin, TX, USA, 2012: 815-828.
    BARKER E and KELSEY J. Recommendation for random number generation using deterministic random bit generators[R]. NIST Special Publication, 2012: 800-890.
    GUAJARDO J, KUMAR S S, SCHRIJEN G J, et al. FPGA intrinsic PUFs and their use for IP protection[C] Cryptographic Hardware and Embedded Systems, CHES 2007, International Workshop, Vienna, Austria, 2007: 63-80.
  • 加载中
计量
  • 文章访问数:  1255
  • HTML全文浏览量:  113
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 修回日期:  2017-01-11
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回