高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种融合曲线演化与模糊C均值聚类算法的快速图像分割模型

马英然 彭延军

马英然, 彭延军. 一种融合曲线演化与模糊C均值聚类算法的快速图像分割模型[J]. 电子与信息学报, 2017, 39(6): 1379-1386. doi: 10.11999/JEIT160786
引用本文: 马英然, 彭延军. 一种融合曲线演化与模糊C均值聚类算法的快速图像分割模型[J]. 电子与信息学报, 2017, 39(6): 1379-1386. doi: 10.11999/JEIT160786
MA Yingran, PENG Yanjun. Fast Image Segmentation Model Combined with Fuzzy C-means Method and Curve Evolution[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1379-1386. doi: 10.11999/JEIT160786
Citation: MA Yingran, PENG Yanjun. Fast Image Segmentation Model Combined with Fuzzy C-means Method and Curve Evolution[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1379-1386. doi: 10.11999/JEIT160786

一种融合曲线演化与模糊C均值聚类算法的快速图像分割模型

doi: 10.11999/JEIT160786
基金项目: 

国家自然科学基金(61502279),国家重点研发计划课题(2016YFC0801406),山东省自然科学基金(ZR2015FM013),山东省重点研发计划项目(2016GSF120012),泰山学者工程项目

Fast Image Segmentation Model Combined with Fuzzy C-means Method and Curve Evolution

Funds: 

The National Natural Science Foundation of China (61502279), The National Key Research and Development Projects (2016YFC0801406), Shandong Provincial Natural Science Foundation (ZR2015FM013), Shandong Province Key Research and Development Projects (2016GSF120012), Taishan Scholar Project

  • 摘要: 针对模糊C均值聚类算法(FCM)分割图像时对噪声敏感和分割边界不封闭问题,该文基于FCM的隶属度矩阵定义伪水平集及演化曲线,提出一个融合曲线演化和FCM的快速图像分割模型。在伪水平集上,通过采用高斯滤波近似曲线演化过程中的弧长正则项,得到封闭光滑的分割边界;通过设计新的边缘停止函数,依据灰度值与隶属度映射关系对噪声点灰度值进行修正,降低了滤波对聚类的影响。聚类和曲线平滑交替进行,提高了模型对图像噪声的鲁棒性。实验结果表明该模型能够较好地克服图像噪声对分割的影响,得到较为理想的分割结果。
  • CASELLES V, KIMMEL G, and SAPIRO G. Geodesic active contours[C]. Proceedings of IEEE International Computer Vision, Cambridge, Massachusetts, 1995: 694-699. doi: 10.1109/ICCV.1995.466871.
    YANG M S and TSAI H S. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction[J]. Pattern Recognition Letters, 2008, 29(12): 1713-1725. doi: 10. 1016/j.patrec.2008.04.016.
    韩明, 刘教民, 孟军英, 等. 结合局部能量与改进的符号距离正则项的图像目标分割算法[J]. 电子与信息学报, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473.
    HAN Ming, LIU Jiaomin, MENG Junying, et al. Local energy information combined with improved signed distance regularization term for image target segmentation algorithm[J]. Journal of Electronics Information Technology, 2015, 37(9): 2047-2054. doi: 10.11999/ JEIT141473.
    赵凤, 刘汉强, 范九伦. 基于互补空间信息的多目标进化聚类图像分割[J]. 电子与信息学报, 2015, 37(3): 672-678. doi: 10.11999/JEIT140371.
    ZHAO Feng, LIU Hanqiang, and FAN Jiulun. Multi-objective evolutionary clustering with complementary spatial information for image segmentation[J]. Journal of Electronics Information Technology, 2015, 37(3): 672-678. doi: 10.11999/JEIT140371.
    OSHER S and SETHIAN J A. Fronts propagating with curvature-dependent speed: Algori-thms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88) 90002-2.
    ADALSTEINSSON D and SETHIAN A. A fast level set method for propagating inter-faces[J]. Journal of Computational Physics, 1995, 118(2): 269-277. doi: 10.1006/ jcph.1995.1098.
    WHITAKER R T. A level-set approach to 3D reconstruction from range data[J]. International Journal of Computer Vision, 1998, 29(3): 203-231. doi: 10.1023/A:1008036829907.
    SHI Y G and KARL W C. A real-time algorithm for approximation of level-set-basedcurve evolution[J]. IEEE Transactions on Image Processing, 2008, 17(5): 645-656. doi: 10.1109/TIP.2008.920737.
    AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy C-means algo-rithm for bias field estimation and segmentation of MIR data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199. doi: 10.1109/42. 996338.
    李阳, 庞永杰, 盛明伟. 结合空间信息的模糊聚类侧扫声纳图像分割[J]. 中国图象图形学报, 2015, 20(7): 865-870. doi: 10.11834/jig.20150702.
    LI Yang, PANG Yongjie, and SHENG Mingwei. Side-scan sonar image segmentation via fuzzy clustering with spatial constrains[J]. Journal of Image and Graphics, 2015, 20(7): 865-870. doi: 10.11834/jig.20150702.
    唐利明, 田学全, 黄大荣, 等. 结合FCMS与变分水平集的图像分割模型[J]. 自动化学报, 2014, 40(6): 1233-1248. doi: 10.3724/SP.J.1004.2014.01233.
    TANG Liming, TIAN Xuequan, HUANG Darong, et al. Image segmentation model com-bined with FCMS and variational level set[J]. Acta Automatica Sinica, 2014, 40(6): 1233-1248. doi: 10.3724/SP.J.1004.2014.01233.
    SAMSON C, BLANC-FERAUD L, AUBERT G, et al. A level set model for image clas-sification[J]. Journal of Computer Vision, 2000, 40(3): 187-197. doi: 10.1023/A:1008183109594.
    LIN S, GAO M T, WANG S M, et al. An image segmentation method by combining fuzzy c-means clustering and graph cuts optimization for multiphase level set algorithms[C]. 2015 2nd International Conference on Information Science and Control Engineering, Shanghai, China, 2015: 611-615.
    WANG L, MA Y R, ZHAN K, et al. Automatic left ventricle segmentation in cardiac MRI via level set and fuzzy C-means[C]. 2015 2nd International Conference on Recent Advances in Engineering Computational Sciences, Chandigarh, India, 2015: 1-6.
    唐利明, 王洪珂, 陈照辉, 等. 基于变分水平集的图像模糊聚类分割[J]. 软件学报, 2014, 25(7): 1570-1582. doi: 10.13328/ j.cnki.jos.004449.
    TANG Liming, WANG Hongke, CHEN Zhaohui, et al. Image fuzzy clustering segmenta-tion based on variational level set[J]. Journal of Software, 2014, 25(7): 1570-1582. doi: 10.13328/j.cnki.jos.004449.
    KRINIDIS S and CHATZIS V. Fuzzy energy-based active contours[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2747-2755. doi: 10.1109/TIP.2009.2030468.
    ZHANG Kaihua, ZHANG Lei, LAM K M, et al. A level set approach to image segmen-tation with intensity inhomogeneity[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 546-557. doi: 10.1109/TCYB.2015.2409119.
  • 加载中
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  195
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 修回日期:  2017-02-09
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回