Topography and Tree Height Estimation Based on the Best Normal Matrix Approximation for PolInSAR Coherence Region
-
摘要: 森林区域林下地形及树高的反演是极化干涉雷达的一个重要应用。该文首先对极化干涉SAR数据的相干区域进行建模及运用最优正规矩阵近似干涉互相关矩阵,得到白化正规干涉互相关矩阵。白化正规干涉互相关矩阵的相干区域为一条直线,任意求得两个不同极化状态下的相干系数进行直线拟合,完成地表的估计,再结合体散射去相干与树高之间的关系,运用查表方法完成树高的估计。该方法回避了传统方法中求解所有极化状态下的相干系数估计及相干区域边缘提取的步骤,在简化参数反演提升估计效率的同时获得正确地表与树高估计,最后运用仿真数据完成算法有效性与可靠性的验证。
-
关键词:
- 极化干涉合成孔径雷达 /
- 相干区域 /
- 最优正规矩阵近似 /
- 地形与树高反演
Abstract: The inversion of topography and tree height in forest area is one of the most important applications in the Polarimetric SAR Interferometry (PolInSAR). In this paper, the coherent region of the PolInSAR data is modeled and the best normal matrix is used to approximate the cross correlation matrix, further, the whitened interferometric cross-correlation matrix is obtained. The coherence region of the whitened interferometric cross-correlation matrix is a straight line. Two arbitrary coherences obtained under two different polarization states can be applied to fitting a straight line. Based on the fitting line, the topographical phase can be estimated successfully. Referring to the relationship between the volume scattering and the tree height, look-up table method is used to search the correct tree height. The proposed method can avoid the complex steps of the traditional method, which needs to solve all the coherences under different polarization states to obtain the edge of the coherent region. The proposed method simplifies the inversion procedure and improves the efficiency of inversion, meanwhile, achieves the correct topography as well as the tree height. Finally, the simulation data are applied to validating the validity and reliability of the proposed method. -
吴一戎, 洪文, 王彦平. 极化干涉SAR的研究现状与启示[J]. 电子与信息学报, 2007, 29(5): 1258-1262. WU Yirong, HONG Wen, and WANG Yanping. The current status and implications of polarimetric SAR interferometry[J]. Journal of Electronics Information Technology, 2007, 29(5): 1258-1262. GUO S L, LI Y, HONG W, et al. Modification of polarimetric SAR interferometry target decomposition with accuracy topography[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1476-1480. doi: 10.1109/ LGRS.2015.2409311. GUO S L, LI Y, YIN Q, et al. Estimation of ground topography under forests with polarimetric SAR interferometry[C]. 2015 IET Radar Conference, Hangzhou, China, 2015: 1-6. CLOUDE S R and PAPATHANASSIOU K P. Three-stage inversion process for polarimetric SAR interferometry[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 125-134. doi: 10.1049/ip-rsn:20030449. GARESTIER F, DUBOIS-FERNANDEZ P C, and PAPATHANASSIO K P. Pine forest height inversion using single-pass X-band PolInSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 59-68. doi: 10.1109/TGRS.2007.907602. 郭胜龙, 李洋, 洪文, 等. 基于简缩极化干涉SAR数据的森林垂直结构参数反演[J]. 电子与信息学报, 2016, 38(1): 71-79. doi: 10.11999/JEIT150394. GUO Shenglong, LI Yang, HONG Wen, et al. Vertical parameters estimation of forest with compact polarimetric SAR interferometric data[J]. Journal of Electronics Information Technology, 2016, 38(1): 71-79. doi: 10.11999/ JEIT150394. METTE T. Forest biomass estimation from polarimetric SAR interferometry[D]. [Ph.D. dissertation], Germany: Technische Universitaet Muenchen, 2006. 冯琦, 陈尔学, 李增元, 等. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10-22. doi: 10.11707/j.1001-7488.20160302. FENG Qi, CHEN Erxue, LI Zengyuan, et al. Forest above-ground biomass estimation method for rugged terrain based on airborne P-band PolSAR data[J]. Scientia Silvae Sinicae, 2016, 52(3): 10-22. doi: 10.11707/j.1001-7488.20160302. TREUHAFT R N and SIQUEIRA P R. The vertical structure of vegetated land surfaces from interferometric and polarimetric radar[J]. Radio Science, 2000, 35(1): 141-177. doi: 10.1029/1999RS900108. 丁克良, 沈云中, 欧吉坤. 整体最小二乘法直线拟合[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(1): 44-47. doi: 1008-0562(2010)01-0044-04. DING Keliang, SHEN Yunzhong, and OU Jikun. Methods of line-fitting based on total least squares[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(1): 44-47. doi: 1008-0562(2010)01-0044-04. 许丽颖, 李世强, 邓云凯, 等. 基于极化干涉SAR 反演植被高度的改进三阶段算法[J]. 雷达学报, 2014, 3(1): 28-34. doi: 10.3724/SP.J.1300.2014.13089. XU Liying, LI Shiqiang, DENG Yunkai, et al. Improved three-stage algorithm of forest height retrieval with PolInSAR[J]. Journal of Radars, 2014, 3(1): 28-34. doi: 10.3724/SP.J.1300.2014.13089. YI C, YAMAGUCHI Y, YAMADA H, et al. PolInSAR coherence region modeling and inversion: The best normal matrix approximation solution[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(2): 1048-1060. doi: 10.1109/TGRS.2014.2332553. CLOUDE S R. Polarisation: Applications in Remote Sensing[M]. Oxford University Press, 2009. ZACHLIN P F and HOCHSTENBACH M E. On the numerical range of a matrix[J]. Linear Multilinear Algebra, 2008, 56(1): 185-225. POTTIER E. ProSARPro_v4.2.0[OL]. https://earth.esa. int/web/polsarpro, 2012. 期刊类型引用(20)
1. 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 . 百度学术
2. 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 . 百度学术
3. 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 . 百度学术
4. 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 . 百度学术
5. 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 . 百度学术
6. 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 . 百度学术
7. 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 . 百度学术
8. 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . 本站查看
9. 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 . 百度学术
10. 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 . 百度学术
11. 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 . 百度学术
12. 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 . 百度学术
13. 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 . 百度学术
14. 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . 本站查看
15. 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . 本站查看
16. 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 . 百度学术
17. 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 . 百度学术
18. 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 . 百度学术
19. 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 . 百度学术
20. 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . 本站查看
其他类型引用(21)
-
计量
- 文章访问数: 1074
- HTML全文浏览量: 89
- PDF下载量: 329
- 被引次数: 41