高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种FMCW InSAR系统时变基线估计方法

付希凯 向茂生 汪丙南 蒋帅 杨玉

付希凯, 向茂生, 汪丙南, 蒋帅, 杨玉. 一种FMCW InSAR系统时变基线估计方法[J]. 电子与信息学报, 2017, 39(5): 1024-1029. doi: 10.11999/JEIT160763
引用本文: 付希凯, 向茂生, 汪丙南, 蒋帅, 杨玉. 一种FMCW InSAR系统时变基线估计方法[J]. 电子与信息学报, 2017, 39(5): 1024-1029. doi: 10.11999/JEIT160763
FU Xikai, XIANG Maosheng, WANG Bingnan, JIANG Shuai, YANG Yu. Time-varying Baseline Estimation Method for FMCW InSAR[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1024-1029. doi: 10.11999/JEIT160763
Citation: FU Xikai, XIANG Maosheng, WANG Bingnan, JIANG Shuai, YANG Yu. Time-varying Baseline Estimation Method for FMCW InSAR[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1024-1029. doi: 10.11999/JEIT160763

一种FMCW InSAR系统时变基线估计方法

doi: 10.11999/JEIT160763

Time-varying Baseline Estimation Method for FMCW InSAR

  • 摘要: FMCW InSAR系统由于载机平台高度低,气流扰动严重,位置和姿态变化大,且微机电系统惯性测量单元(MEMS IMU)测量精度低,导致系统出现较大的时变基线,严重影响数字高程模型(DEM)精度。针对这一问题,该文提出了一种FMCW InSAR系统的时变基线估计方法。首先利用双通道单视复图像数据,估计出各个距离门内的时变基线导数,然后建立时变基线的距离向空变模型,利用随机抽样一致性检验的方法对模型进行求解,解得水平和垂直向的时变基线导数值,对其积分得到时变基线值。最后通过FMCW InSAR实际数据对时变基线进行估计,并与高精度位置和姿态测量系统(POS)记录的数据进行对比,验证了所提方法的有效性。
  • ZAUGG E C, HUDSON D L, and LONG D G. The BYU SAR: A small, student-built SAR for UAV operation[C]. Geoscience and Remote Sensing Symposium, Colorado, USA, 2006: 411-414.
    META A, HOOGEBOOM P, and LIGTHART L P. Signal Processing for FMCW SAR[J]. IEEE Transactions on Geoscience Remote Sensing, 2007, 45(11): 3519-3532. doi: 10.1109/TGRS.2007.906140.
    SIQUEIRA P, SCHROCK R, MILLETTE T, et al. An airborne 35 GHz radar interferometer in development at the university of Massachusetts[C]. Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 2933-2936.
    AGUASCA A, ACEVO-HERRERA R, BROQUETAS A, et al. ARBRES: light-weight CW/FM SAR sensors for small UAVs[J]. Journal of Sensors, 2013, 13(3): 3204-3216. doi: 10.3390/s130303204.
    FU K, SIQUEIRA P, and SCHROCK R. A university- developed 35 GHz airborne cross-track SAR interferometer: Motion compensation and ambiguity reduction[C]. Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 2241-2244.
    SCANNAPIECO A F, RENGA A, and MOCCIA A. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation[J]. Journal of Sensors, 2015, 15(2): 2309-2335. doi: 10.3390/s150202309.
    SCANNAPIECO A F, RENGA A, and MOCCIA A. Compact millimeter wave FMCW InSAR for UAS indoor navigation[C]. IEEE AESS Workshop on Metrology for Aerospace, Benevento, Italy, 2015: 551-556.
    SCANNAPIECO A F, RENGA A, and MOCCIA A. Indoor operations by FMCW millimeter wave SAR onboard small UAS: A simulation approach[J]. Journal of Sensors, 2016, Article ID 4968476, 13 pages, doi: 10.1155/2016/4968476.
    LIU W, FENG H, YEE A S, et al. Premier results of the multi-rotor based FMCW synthetic aperture radar system[C]. IEEE Radar Conference, Philadelphia, USA, 2016: 1-4.
    WANG Y, TANG K, ZHANG Y, et al. A Ku-band 260mW FMCW synthetic aperture radar TRX with 1.48 GHz BW in 65 nm CMOS for micro-UAVs[C]. IEEE International Solid- State Circuits Conference, San Francisco, CA, USA, 2016: 240-241.
    庄晋升. 基于MEMS IMU的机载SAR运动补偿方法研究[D]. [硕士论文], 中国科学院大学, 2015.
    ZHUANG Jinsheng. Study on airborne SAR motion compensation method based on MEMS IMU[D]. [Master dissertation], The University of Chinese Academy of Sciences. 2015.
    JIA Gaowei, CHANG Wenge, LI Xiangyang, et al. A brief analysis of the motion compensation for FMCW SAR[C]. International Conference on Advances in Satellite and Space Communications, Venice, Italy, 2013: 52-57.
    CHANG Wenge, JIA Gaowei, LI Xiangyang, et al. A compact FMCW SAR real-time imaging system and its performance analysis[C]. IET International Radar Conference, Hangzhou, China, 2015: 1-4.
    ZHENG Shichao, LI Xiangyang, WANG Hui, et al. Signal processing for Ka-band FMCW miniature SAR/GMTI system[C]. International Radar Symposium, Dresden, Germany, 2015: 541-546.
    XING Mengdao, JIANG Xiuwei, WU Renbiao, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience Remote Sensing, 2009, 47(8): 2870-2883. doi: 10.1109/TGRS.2009.2015657.
    BULLOCK R J, VOLES R, CURRIE A, et al. Two-look method for correction of roll errors in aircraft-borne interferometric SAR[J]. Electronics Letters, 1997, 33(18): 1581-1583. doi: 10.1049/el:19971056.
    SCHEIBER R and MOREIRA A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience Remote Sensing, 2000, 38(5): 2179-2191. doi: 10.1109/36.868876.
    PRATS P and MALLORQUI J J. Estimation of azimuth phase undulations with multisquint processing in airborne interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1530-1533. doi: 10.1109/TGRS.2003.814140.
    PRATS P, REIGBER A, MALLORQUI J J, et al. Efficient detection and correction of residual motion errors in airborne SAR interferometry[C]. Geoscience and Remote Sensing Symposium, Anchorage, Alaska, 2004: 992-995.
    PRATS P, REIGBER A, and MALLORQUI J J. Interpolation-free coregistration and phase-correction of airborne SAR interferograms[J]. IEEE Geoscience Remote Sensing Letters, 2004, 36(2): 207-219. doi: 10.1109/LGRS. 2004.828181
    REIGBER A, PRATS P, and MALLORQUI J J. Refined Estimation of Time-Varying Baseline Errors in Airborne SAR Interferometry[J]. IEEE Geoscience Remote Sensing Letters, 2006, 3(1): 145-149. doi: 10.1109/LGRS.2005. 860482.
    MANCON S, MONTI GUARNIERI A, TEBALDINI S, et al. Orbital error estimation through multi-squint analysis[C]. European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1-4.
    MANCON S, TEBALDINI S, GUARNIERI A M, et al. Orbit accuracy estimation by multi-squint phase: First Sentinel-1 results[C]. Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1276-1279.
    李焱磊. 机载差分干涉SAR运动补偿技术研究[D]. [博士论文], 中国科学院大学, 2013.
    LI Yanlei. Research on aotion compensation in airborne differential synthetic aperture radar interferometry[D]. [Ph.D dissertation], The University of Chinese Academy of Sciences, 2013.
  • 加载中
计量
  • 文章访问数:  1282
  • HTML全文浏览量:  178
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-11-02
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回